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How to estimate/evaluate models?

e Full information methods like ML and its Bayesian version take
every aspect of the model as truth

e A less ambitious approach is to focus on just some "key
properties"

e both in the model and in the data

e What properties?

e means, standard deviations, cross-correlations

e but propagation of shocks is key aspect of economic models
= autocovariance say something about this but not in the
most intuitive way

o IRFs are better for this
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General definition IRFs

e Suppose

Ve =f(Ye—1,Yt—2, -~ ,yt_p,st) and & has a variance equal to o?

e The IRF gives the jth—period response when the system is
shocked by a one-standard-deviation shock.
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General definition IRFs

e Consider a sequence of shocks {&}{ .
{#:}:2 are the generated series

e Consider an alternative series of shocks such that

{zt+a ift=1

& = _
&t O.W.

e The IRF is then defined as

IRP(j) = yr—1+j - yr—lﬂ'

Critiques
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IRFs for linear processes

e Linear processes: The IRF is independent of the particular
draws for &

e Thus we can simply start at the steady state (that is when &
has been zero for a very long time)

e The effect of a shock of size Ao is A times the effect of a
shock of size o
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IRFs for linear processes

e For example, if
Yt = PYr—1 + &
then ‘
IRF(j) = op/ ™1

e Often you can not get an analytical formula for the impulse
response function, but simple iteration on the law of motion
(driving process) gives you the exact same answer

e Note that this IRF is not stochastic
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IRFs for nonlinear processes

¢ |IRF depends on

@ state in the period when shock occur (y;—1, -2, - Yi—p)
@® subsequent shocks

e Moreover, the effect of a shock of size Ao is not A times the
effect of a shock of size o
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IRFs in theoretical models

e When you have solved for the policy functions, then it is trivial
to get the IRFs by simply giving the system a one standard
deviation shock and iterating on the policy functions.

e Shocks in the model are structural shocks, such as

e productivity shock
o preference shock
e monetary policy shock
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IRFs in the data

The big question

e Can we estimate IRFs from the data without specifying an
explicit theoretical model

e That is what structural VARs attempt to do
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VARs & IRFs

What we are going to do?
e Describe an empirical model that has turned out to be very
useful (for example for forecasting)
¢ Reduced-form VAR

e Describe a way to back out structural shocks (this is the hard
part)
o StructuralVAR
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Reduced Form VARs

o Let y; be an n x 1 vector of n variables (typically in logs)

J
Yt = ZAij + Ut
j=1
where A]- is an 1 X 1 matrix.

e Wold representation is a justification for the linearity.
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Reduced Form Vector AutoRegressive
models (VARs)

e constants and trend terms are left out to simplify the notation

e This system can be estimated by OLS (equation by equation)
even if y; contains I(1) variables



Intro & IRFs Reduced-form VARs

Estimation of VARs

Estimation Structural VARs Critiques

J
ye =) Apyi—j+us
=1

Claim:

e You can simply estimate a VAR in (log) levels even if variables
are 1(1) (and even when you have higher-order integration as
long as you have enough lags)

o Why?
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Spurious regression

e Let z; and x; be I(1) variables that have nothing to do with
each other

e Consider the regression equation
Zt = axy + uy
e The least-squares estimator is given by

iy = Zszl XtZ¢
- T .2
Yb—1 X7

e Problem:
Tlil’n ﬁT 75 0
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Source of spurious regressions

The problem is not that z; and x; are 1(1)

The problem is that there is not a single value for a such that
Uy is stationary

If zy and x; are cointegrated then there is a value of a such that

Zy — axy is stationary

Then least-squares estimates of a are consistent

but you have to change formula for standard errors
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How to avoid spurious regressions?

Answer: Add enough lags.

e Consider the following regression equation
zy = axy + bzy_1 + uy

e Now there are values of the regression coefficients so that u; is
stationary, namely
a=0andb=1

e So as long as you have enough lags in the VAR you are fine
(but be careful with inferences)
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How to get standard errors?

o If all data series are stationary you can get standard errors using
the usual formulas (see Hamilton 1994).

o If they are not you can use bootstrapping
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Bootstrapping
e Suppose
Yr = ayi—1 + &
z'l\T _ Zyt]/t—l
YYi-1Yi-1

e How to get standard errors for IRF?
technique easily generates for more complex VAR and other
statistics
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Bootstrapping

1. Estimate model and IRF
2. Calculate residuals, {&},_, = ©

3. Generate | new sample of length T from

zt = Arz—1+e
Z1 = 0N

e; is drawn from ©®

Critiques
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Bootstrapping

4. In each sample j calculate statistics of interest,
e.g., 4" and 6'"-period IRF, IRF(4,) and IRF(6,))

5. Order statistics across all | samples from small to large

6. Use this distribution to calculate confidence intervals
e.g., 90% confidence goes from 5" to 95t percentile
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Structural VARs

Consider the reduced-form VAR

Estimation Structural VARs

j
ye =) Apyij+us
=1

e For example suppose that y; contains

o the interest rate set by the central bank
e real GDP

e residential investment
e What affects
o the error term in the interest rate equation?

e the error term in the output equation?
e the error term in the housing equation?

Critiques
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Structural shocks

e Suppose that the economy is being hit by "structural shocks",
that is shocks that are not responses to economic events

e Suppose that there are 10 structural shocks. Thus
Uy = Bet

where B is a 3 X 10 matrix.
e Without loss of generality we can assume that

Elete}] = I
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Structural shocks

e Can we identify B from the data?
E[usu;] = BE[eie}]B’ = BB’
e We can get an estimate for E[u;u}] using
A T
£= Y wi/(T-])
t=J+1
e But B contains 30 unknowns and

E [uu;] = BB’

has only 9 equations

Critiques
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Identification of B

Can we identify B if there are only three structural shocks?

B has 9 distinct elements

But 3 is symmetric, so we only have 6 (not 9) equations

e Answer is still NO
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Identification of B

e Reason for lack of identification:
Not all equations are independent. X1 = X 1. For example

Y12 = by1boy + bibao + b13bos

but also
Y1 = bp1b11 + baobio + bozbis

e In other words, different B matrices lead to the same X matrix
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Identification of B

e To identify B we need additional restrictions

e short-term restrictions: direct restrictions on B

e long-term restrictions: restrictions on B such that long-term
responses have a certain value (typically zero)

e sign restrictions: restrictions on B such that IRFs have certain
signs at certain horizons
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Identification of B

i 1
uf =B e%
r mp
uj e
e Suppose we impose
00
B = 0

e Then | can solve for the remaining elements of B from

A

BB =%

Critiques
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Matlab commands

o If
00
B= 0
use B =chol(X)/
o If
B=1]0
00

use B = [choI(Z‘fl)}_1

Critiques
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Identification of B
e Suppose instead we use

u’{ e}
u | =D | e
uy e
e And that we impose
00
D = 0
e This corresponds with imposing
0
B = 00

e This does not affect the IRF of e;np. All that matters for the
IRF is whether a variable is ordered before or after r;



Intro & IRFs Reduced-form VARs Estimation Structural VARs Critiques

Calculating IRFs from (structural) VAR

® Calculation IRFs from first-order VAR is trivial

® Calculation IRFs from higher-order VAR is also trivial,
since higher-order VARs can be written as first-order system
(or you simply iterate on the system)
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First-order VAR

Yyt = A1yt—1 + Be;

e IRFs, variances, etc. can be calculated analytically,
because you can easily calculate the MA representation:

y; = Be; + A1Be;,_1 + A3Bey_p + - - -
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State-space notation

Every VAR can be presented as a first-order VAR. For example let

{ Y1 ] — Ay { i1 ] LA, { Yi—2 ] +B { €1, ]
Yo Yo Yot €t

Y1t Yi1,6—1 €1t
Yor | _ { A1 Ay ] Y21 | { B 02x2 ] et
Y1t—1 Ipyo 0242 Y1t-2 O2x2 022 0

Vo1 Yoi—2 0
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State-space notation

Yy =AY, 1+ E,

where Y} is an n X 1 vector and E; is serially uncorrelated. This
AR(1) structure allows for analytical results. For example, let

E[Y/Y]] = Zy and E [E;E]] = Zy.

e Then
vec (Sy) = (I—A® A) L vec (Zp),

which uses that
vec (TVR) = R’ ® Toec (V)

for conformable matrices T, V, R
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Alternative identification assumptions

e restrictions do not have to be zero restrictions

e you can impose restrictions on B such that IRFs have certain

properties
then restrictions imposed depend on rest of the VAR
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Identifying assumption (Blanchard-Quah)

VAR used by Gali (1999)

J
Zy = A]'Zt_]' + Bey
j=1
with
7 = { All’l(yt/ht) 1
Aln(ht)

3
g = t,technology
€t non-tech nology
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Identifying assumption (Blanchard-Quah)

¢ Non-technology shock does not have a long-run impact on
productivity

e Long-run impact is zero if

e Response of the level goes to zero
o Responses of the differences sum to zero
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Get MA representation

zz = A(L)z + Be
= (I-A(L) 'Bg
= D(L)g
= Dogt+Dig 1+ -

Note that Dy = B
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Sum of responses

i D;=D(1) = (I-A(1))"'B
j=0

Blanchard-Quah assumption:

Critiques
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Sign restrictions

BB =%

General idea of sign restrictions:

e Try "all" matrices B such that the IRFs satisfy certain
properties

Critiques
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Sign restrictions - example

e Try "all" matrices B such that the IRFs satisfy certain
properties such as

e |n response to an expansionary monetary policy shock, the
interest rate falls while money and prices rise.

¢ |n response to a positive shock to money demand, both the
interest rate and money increase.

e In response to a positive demand shock, both output and
prices rise.

¢ |n response to a positive supply shock, output rises but prices
fall.

¢ |n response to a positive external shock, the exchange rate
devaluates and output increases.

e You would have to specify the horizon for which this should hold

These examples are from Rubio-Ramirez, Waggoner, Zha (2005).
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Sign restrictions - General Idea

How to search for "all" B that satisfy BB’ = X and the sign
restrictions?

e Let B be the Cholesky decomposition of %,

e Bs satisfying BB’ = % can be expressed as
B =BQ

with Q being an orthogonal matrix, that is

QQ =1L
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Sign restrictions - In practice

"Systematically" look for Q such that

[
QY =1

B = OB satisfies the sign restricions

Critiques
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Givens matrices - Example

_ | Qu Qn
Q= { Qn Qx ]

e Note that

Critiques
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Sign restrictions - Givens matrices

e Suppose that B is a 2 X 2 Matrix

e Then all Qs satisfying QQ’" = I can be represented with the
following Givens matrices

cosf —sinf

rotation : Q' = { sinf cosf

],—nﬁ@ﬁn

reflection : Qf = [ _Sicgze sg;g } a

¢ In practice you can use a grid for 6 or draw 6 from a uniform
distribution
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Number of Givens matrices
o Let's index Q by the Q> element, that is,

D =wwith —1<w<1

e For each w there are (at most) four different solutions for

Q11,Q12, and Q2

Qh+Qh =1
Quw+Q10» = 0
w+Qhp = 1

e Thus, focusing on QQ’" = I equation indicates there are 4 Qs
for every w.

e w = sin# has two solutions for 6 = again 4 Qs (two Q™'s
and two Q"*fs).
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Reduced-form VARs

Estimation

Structural VARs

Givens matrices - Third Order

[ cos 6,
sin 91
0

Qrot —
1 .
—sin 6y
cos 64
0

ngt

0
0
1

[ 1 0
0 cosf3

| 0 sinf;

0
— sin 93
cos 03

ant —
cost 0 —sinb,
0 1 0
sinf, 0 cos6f,

Critiques
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Givens matrices - Third Order

ref __
=

—cosf; sinf; 0]
sinf; cosf; O

i 0 0 1]
ref __ ref __
) 2 = i} 3 =
—cosf, 0 sinf, 1 0 0
0 1 0 0 —cosf3 sinf3

sinf 0 cosfy | 0 sinfl3 cosf;
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Givens matrices - Third Order

For each combination of 61, 6>, and 63 consider

3

Q= HQ; (0;) for r € {rot,ref}

i=1

Critiques
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QR Decomposition

Rubio-Ramirez, Waggoner, and Zha (2005) propose the following
alternative to find orthogonal n X n matrices, which is
computationally more efficient for large VARs:

@ Let W be an n X n matrix, each element is an i.i.d. draw from
aN(0,1)

@ Decompose W using the QR decomposition (Householder
transformation)
W = 0R,

where Q is the orthogonal matrix we are looking for
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QR Decomposition - Matlab

® W = randn(3,3);

® [Q.R]=qr(W);
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QR Decomposition - example

o
—0.0551 0.1992 0.8829
W= | —1.0717 —0.4964 0.7643
-0.3729 —-1.6501 0.2373

2]

—0.9433 03156 —0.1027

—0.0485 0.174 0.174
Q=
—0.3283 —0.9327 0.1496
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Sign restrictions - comments

e Sign restrictions give you a set of IRFs.
If you would plot the median at each horizon then this typically
would be a combination of different IRFs, that is, there may
not be one IRF that is close to what you are plotting

e When using sign restrictions in a Bayesian framework, then you
should be careful that drawing from the posterior does not
impose additional restrictions (See Arias, Rubio-Ramirez and
Waggoner 2014 discuss this and provide a mechanism to do
this right)
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If you ever feel bad about getting too much
criticism ....
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If you ever feel bad about getting too much
criticism ....

e be glad you are not a structural VAR
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Structural VARs & critiques

e From MA to AR
e Lippi & Reichlin (1994)
e From prediction errors to structural shocks
e Fernandez-Villaverde, Rubio-Ramirez, Sargent, Watson (2007)

e Problems in finite samples
e Chari, Kehoe, McGratten (2008)
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From MA to AR

Consider the two following different MA(1) processes

1
Ve = &+ Eet_l' Ei[e:] =0, E [eﬂ = o2

Xy = €t+2€t_1, Ei» [et] =0, Et [eﬂ = 0'2/4

e Different IRFs

e Same variance and covariance

E [yeys—j] = E [xex: ]

Critiques
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From MA to AR

e AR representation:

Y = (1 + QL) &t
1
(1+60)”

1 > ;
—_— = g~L]
(1+6L) Jg 4

&t

e Solve for a;s from

1=ao+(a1+a09)L+(a2+a19)L2+---

Critiques
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From MA to AR

Solution:

apg = 1

a = —009

ay = —6119 = a092
You need

0] <1
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Prediction errors and structural shocks

Solution to economic model

Xey1 = Axt+ Beyq
Yiy1 = Cxp+ Depyq

e X;: state variables
e y;: observables (used in VAR)

e ¢&;: structural shocks
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Prediction errors and structural shocks

e From the VAR you get prediction error ¢;;1

err1 = Yey1 — Et [Vet1]
= Cxt + Dst—H — Et [CXt]

C (xt — Bt [xt]) + Desyq
e Problem: Not guaranteed that

Xt = Et [xt]
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Prediction errors and structural shocks

e Suppose: Yy = X¢
e that is, all state variables are observed

e Then
Xt = Et [xt]
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Prediction errors and structural shocks

e Suppose: Y; 7# X;

e Has y; has enough info to uncover x; and, thus, &?
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Prediction errors and structural shocks
e Suppose D is invertible
e =D (Y141 — Cxr)
—
Xpp1 = Axp + BD™! (yt—i—l — Cxt)
—
i1 (1 — <A + BD_1C> L) —_—
o —>
Xt = Et [Xt] if
the eigenvalues of A —BD~'C

must be strictly less than 1 in modulus

e See F-V,R-R,S, W (2007)
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Finite sample problems

e Summary of discussion above

o Life is excellent if you observe all state variables
e But,

e we don't observe capital (well)
e even harder to observe news about future changes

o If ABCD condition is satisfied, you are still ok in theory
e Problem: you may need oco-order VAR for observables

o recall that k; has complex dynamics
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Finite sample problems

@ Bias of estimated VAR
e apparently bigger for VAR estimated in first differences
® Good VAR may need many lags
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Alleviating finite sample problems

Do with model exactly what you do with data:

e NOT: compare data results with model IRF
e YES:

e generate N samples of length T
o calculate IRFs as in data
e compare average across N samples with data analogue

This is how Kydland & Prescott calculated business cycle stats
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