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1 Introduction

This paper explains how a perturbation method can be applied to solve the
incomplete markets model with aggregate uncertainty described in den Haan,
Judd, and Juillard (2008) (henceforth referred to as Model B). We face two main
challenges in applying existing perturbation algorithms to this model: how to
deal with the occasionally binding non-negativity constraint for capital and
with the continuum of agents that are assumed in Model B. In Sections 2 and
3, we explain how we meet these challenges by using a barrier method, and by
replacing the structure with a continuum of agents by a setting in which a single
in�nitesimal agent faces prices generated by a representative-agent economy; we
also discuss a model variant with a large (but �nite) number of agents.1 Note
that the simulation results reported in the comparison paper, den Haan (2008),
are based on the representative-agent setup. Sections 4 and 5 summarize key
properties of the model solution, including policy functions and Euler equation
errors. Section 6 concludes the paper.

2 Two Challenges for Perturbation

2.1 Continuum of Agents

Model B is a production economy with a continuum of households of unit
mass. Currently available �general purpose� computer programs for pertur-
bation analysis are not designed to deal with an in�nite number of variables.2

In order to apply the perturbation method to Model B, we make use of the
property that each in�nitesimal agent is a price taker. We solve a representa-
tive agent version of the economy to generate a process for the wage rate and
the rental rate of capital. That is, we express the wage and rental rates as func-
tions of aggregate shocks and the aggregate capital stock only, while ignoring
the wealth distribution. We then solve the decision problem of an in�nitesimal
agent who faces that process.3

The assumption that factor prices are generated by a representative-agent
economy greatly simpli�es the application of the perturbation method, but that
assumption is not indispensable. We also consider a model variant in which the
continuum of agents is replaced by a large (but �nite) number of agents, and
in which individual decisions and factor prices are jointly solved for. We �nd

1Kim, Kim, and Kollmann (2004) use the same approach to solve a heterogeneous agent
incomplete markets model with trade in bonds (instead of trade in physical capital).

2See algorithms such as gensys, gensys2, Dynare, PerturbationAIM, and Judd-Jin�s PSD.
For a detailed comparison of these methods, see Kim et al. (2003).

3When solving a heterogeneous-agent model, Krussell and Smith (1998) also assume that
households believe that they face a simple stochastic process for aggregate capital and its
price. These authors impose the consistency condition that the process for aggregate prices
faced by households must be the same as the one that they would estimate from a simulation of
the model. The representative-agent structure in this paper does not have such a consistency
requirement.
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that, as the number of agents rises, individual policy functions in that N-agent
model approach those in the �representative-agent�setup.
In closely related research on a heterogenous agent economy, Preston and

Roca (2007) explicitly include the second moments of the wealth distribution
as a perturbation variable, and solve the model using a second-order accurate
perturbation method. Therefore, the wealth distribution in their solution is
consistent with individual behavior. However, given the second-order nature of
the wealth distribution terms, ignoring the wealth distribution would not a¤ect
the results when the model is approximated up to the �rst order, which is in
fact the approach taken in most of this paper.4

In another closely related contribution, Reiter (2006) seeks to overcome the
local nature of the perturbation method by combining that method with a pro-
jection method. Speci�cally, he solves a model variant with only idiosyncratic
shocks by a projection method, and then perturbs its solution with respect to
aggregate shocks (up to the �rst order in his application).
Compared to these contributions, our approach provides the simplest way

to apply a perturbation method to Model B. The method here is also very fast,
especially when compared to projection methods; for example, computing policy
functions takes less than a second.5

2.2 Inequality Constraint

The other challenge is how to deal with the non-negativity constraint for in-
dividual capital stocks. Perturbation methods cannot directly be applied to
models with occasionally-binding inequality constraints. One possible way to
deal with this problem is to modify the utility function so that agents are pe-
nalized when capital holdings move close to the �barrier� of the zero bound.
This �barrier method�(see Luenberger, 1973; and Judd, 1998) converts Model
B into an optimization problem with only equality constraints, which allows us
to apply a standard perturbation method.6

Speci�cally, we consider the following modi�ed utility function:

U(cit; k
i
t) =

�
cit
�1�
 � 1
1� 
 + �

�
log

�
kit
�k

�
� k

i
t � �k
�k

�
(1)

where cit; k
i
t are an individual household�s consumption in period t, and her

capital stock at the beginning of that period, respectively. � > 0 is a coe¢ cient
(referred to as a �barrier parameter�), and �k is the value of the individual capital
stock in the (deterministic) steady state of the economy. Due to the term log kit
in the (modi�ed) utility function, the marginal utility of holding capital goes to
in�nity when kit goes towards zero. This speci�cation ensures that the steady

4 In the economy considered in Preston and Roca (2007), the distribution of capital does
not signi�cantly a¤ect aggregate dynamics.

5Participating algorithms based on projection methods take between 7 minutes and 2739
minutes to solve the model. See Table 3 in den Haan�s (2008) comparison paper.

6Preston and Roca (2007) also use a barrier method.
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state is independent of �: (Note that this modi�ed utility function penalizes not
only capital holdings below the steady state but also capital holdings above the
steady state.)
We next describe the model equations used for our computational approach.

3 The Model

The budget constraint of an individual household is given by

cit + k
i
t+1 = rtk

i
t + (1� � t)wt�l"it + �wt(1� "it) + (1� �)kit; (2)

where "it 2 f0; 1g is the employment status of the individual; �l is the time
endowment of the household (set at 1=0:9); rt and wt are the rental rate of
capital and the wage rate, respectively; � t is the labor tax rate, and �wt is the
unemployment bene�t; � is the depreciation rate of capital. The household�s
intertemporal Euler equation is

(cit)
�
 = Et�

�
cit+1

��

(rt+1 + 1� �) + ��

�
1

kit+1
� 1
�k

�
; (3)

where � is the subjective discount factor.
The equilibrium rental rate and the wage rate are given by

rt = �at

�
Kt

�lLt

���1
; wt = (1� �)at

�
Kt

�lLt

��
; (4)

where at; Kt and Lt are TFP, the aggregate capital stock, and the aggregate
labor supply, respectively.
The �rst model variant that we consider, referred to as the �representative

agent setup,�solves the rental and wage rates from a representative agent econ-
omy; that variant assumes that rt satis�es the following Euler equation (of a
hypothetical representative household):

(Ct)
�
 = Et� (Ct+1)

�

(rt+1 + 1� �); (5)

where Ct is aggregate consumption. The aggregate resource constraint is

Ct +Kt+1 = Yt + (1� �)Kt; (6)

where Yt is aggregate output. The aggregate production function is: Yt =
at(Kt)

�(�lLt)
1��: We assume that Lt is given by

(Lt � �L) = 3(at � 1); (7)

where �L is the unconditional mean of total employment; this equation guaran-
tees that, in the economy with aggregate uncertainty, the unemployment rate
is 4% in a state with high TFP (at = 1:01) and 10% in a state with low TFP
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(at = 0:99), as stipulated in the description of Model B. The labor tax rate
obeys � t = �(1� Lt)=(�lLt):
The equilibrium conditions of the �representative-agent set-up� consist of

equations (2)-(7).
The second model variant, the �N -agent model,�assumes N > 1 households

indexed by i = 1; ::; N . The equilibrium conditions of that variant are given by
equations (2)-(3) for i = 1; ::; N; by (6) and (4), and the aggregation conditions
Ct =

1
N

P
i c
i
t; Kt =

1
N

P
i k

i
t; Lt =

1
N

P
i "
i
t:

We approximate both model variants around steady states values of aggre-
gate and individual capital stocks and consumption that are given by

�K = �k = �l�"

�
� + (1� �)=�

�

�( 1
��1 )

; (8)

�C = �c = �k�
�
�l�"
�1�� � ��k; (9)

where �" is the (exogenously given) mean employment rate. Throughout the
paper, we denote steady state values by an upper bar.

3.1 Calibration of Continuous-State Shock Processes

Although the perturbation method does not generically require a continuous
distribution for the shocks, the algorithms that we use (see below) require
continuous-state autoregressive forcing variables. Therefore, we construct con-
tinuous approximations of the discrete-state Markov processes given in Model
B. We calibrate the continuous processes by matching one-period-ahead condi-
tional expected values and standard deviations of individual employment and
of TFP to the corresponding moments of the original discrete-state processes
(details available on request).
In the economy without aggregate uncertainty, this moment-matching ap-

proach yields the following continuous process for individual employment:

"it+1 = 0:4 + :55555"
i
t +

�
0:48989� 0:28381"it

�
�it+1; (10)

where �it+1 is a white noise that has unit variance and is independent across
agents (thus:

R
�it+1di = 0).

7

In the economy with aggregate uncertainty, the same moment-matching ap-
proach yields the following process for TFP:

at+1 = 0:25 + 0:75at + 0:00661�
a
t+1; (11)

where �at+1 is a white noise with unit variance. (7) implies the following linear
relation between at and the cross-agent mean employment rate at date t, here

7Under the discrete-state process "it only takes values 0 or 1; and E("
i
t+1j"it = 0) = 0:4;

E("it+1j"it = 1) = 0:9555; Std("it+1j"it = 0) = 0:4898; Std("it+1j"it = 1) = 0:2060: The
process (10) reproduces those four moments; e.g. (10) implies E["it+1j"it] = 0:4+ :5555"it; thus
E["it+1j"it = 1] = 0:4 + :5555 = 0:9555 etc.
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denoted by "t: "t = �2:07+3at:8 In the economy with aggregate uncertainty, we
assume that agent i�s employment follows a process of the form "it+1 � "t+1 =
f
1 + 
2at+1 + 
3at + 
4("it � "t)g("it � "t)+ f
5 + 
6at+1 + 
7at + 
8("it �
"t)g�it+1;where �it+1 is a white noise with unit variance; �it+1 is independent
across agents and independent of �at+1. This speci�cation guarantees that the
average employment rate in period t+1 equals "t+1 :

R
"it+1di = "t+1 if

R
"itdi =

"t: We select the coe¢ cients 
1; ::; 
8 that best match the one-period ahead
conditional moments E["it+1jat+1; at; "it]; Std["it+1jat+1; at; "it] of the discrete-
state process, for at; at+1 2 f0:99; 1:01g, "it 2 f0; 1g:9 This gives

"it+1 � "t+1 = f13:0158� 17:4167at+1 + 4:8438atg("it � "t) +
f2:5159� 2:4029at+1 + 0:0953at � 0:2672("it � "t)g�it+1(12)

3.2 Numerical Algorithm

We solve the model variants up to �rst order, using the Matlab code gensys.m
(Sims, 2001). (Note that all second-order terms in the continuous shock processes
described in the previous section disappear when a �rst-order accurate model
approximation is computed.) In addition, we experiment with a second-order
accurate solution, using the Matlab code gensys2.m (Kim, Kim, Schaumburg,
and Sims, 2003).10

3.3 Calculating Policy Functions

We use levels of variables as perturbation variables.11 In what follows, dz � z�z
denotes the deviation of a variable z from its steady state value z: For the
�representative-agent setup�, the program generates a solution of the following
form:

dvit = f(dy
i
t�1;[�

i
t; �

a
t ]); (13)

where vit � [cit; "it; kit+1;Ct; Lt;Kt+1; at]; y
i
t�1 � ["it�1; kit;Kt; at�1]:

Model B requires a policy function that expresses vit as a function of z
i
t �

["it; k
i
t;Kt; at]; i.e. of individual and aggregate capital stocks at the beginning

of period t, and of employment and TFP at t. Such a policy function can
be obtained by using the shock processes (10)-(12) to express [�it; �

a
t ] as func-

tions of [d"it; d"
i
t�1; dat; dat�1]: Substitution of the resulting expressions into (13)

8Under the discrete-state process with aggregate uncertainty, at 2 f0:99; 1:01g; and "t only
takes the value 0:9 or 0:96 ("t = 0:9 when at = 0:99; and "t = 0:96 when at = 1:01): Our
linear relation matches those values.

9Speci�cally, the selected 
1; ::; 
8 coe¢ cients minimize the sum of squared di¤erences
between the conditional one-period ahead moments implied by the continuous approximating
process and the conditional moments of the discrete-state process.
10These two programs are publicly available at http://sims.princeton.edu/yftp/gensys2.

Robert Kollmann also contributed to the development of gensys2.
11 It would not be suitable to use the log capital stock as a perturbation variable, as this

would entail that the solution for capital is always strictly positive. In Model B, a non-
negligible fraction of agents hold zero capital.
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gives dvit = ~f(dzit;[d"
i
t�1; dat�1]): Of course, the derivatives of ~f with respect to

[d"it�1; dat�1] are zero. Hence, the policy function is given by:

dvit = F (dz
i
t) � ~f(dzit;[0; 0]): (14)

3.3.1 Adjusting the Policy Function to Ensure Non-Negativity of
the Capital Stock

If one solved the optimization problem with the modi�ed utility function (1)
in an exact nonlinear way, the solution for individual capital would never hit
the zero lower-bound, and that even for arbitrarily small values of �. In our
approximate solution, however, a sizable value of � is required to ensure that
agents never reach the boundary; for small values of �; agents can violate the
inequality constraint as the perturbation method generates a smooth solution
that includes the negative range for end-of-period capital. When the inequality
constraint is violated, we force the agents to stay on the boundary by using
the following strategy. Let ki�t+1; c

i�
t denote the date t capital and consumption

choices generated by the perturbation solution. We impose the non-negativity
constraint kit+1 � 0 by replacing ki�t+1 and c

i�
t by kit+1 = max(0; ki�t+1) and

cit = c
i�
t +k

i�
t+1�kit+1: In other words, when the perturbation solution generates

negative capital ki�t+1 < 0, we replace k
i�
t+1 by k

i
t+1 = 0; and we use the budget

constraint to solve for consumption.

4 Results for the �Representative-Agent Setup�

This section discusses selected quantitative results for the �representative-agent
setup�. We focus on the role of the barrier coe¢ cient � for model properties.
Additional simulation results can be found in den Haan�s (2008) comparison
paper.

4.1 Policy Function for Individual Capital Holdings

We begin by discussing the properties of the (approximate) policy function that
expresses the individual�s capital stock at the end of period t, kit+1, as a function
of her beginning-of-period capital stock, kit: We �nd that the non-negativity
constraint kit+1 � 0 never binds when the agent is employed ("it = 1), even
when kit is close to zero. However, when the agent is unemployed ("

i
t = 0), the

non-negativity constraint binds when kit is close to zero. The policy function
has a slope near unity, in the range where kit+1 > 0:

12

For the economy with aggregate uncertainty, Figure 1 shows the policy func-
tion of an unemployed agent in a state with low TFP (the aggregate capital
stock is set at its steady state value). Di¤erent values for the barrier parameter
� are considered. When � = 0, the constraint kit+1 � 0 is just binding when

12 In that range, the approximate policy function is linear, as a �rst-order accurate solution
method is used.
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kit = 2:09. For � > 0; agents are penalized when holding a low capital stock;
therefore, the slope of the policy function is lower and, for the unemployed agent,
the constraint kit+1 � 0 binds at a lower value for kit; when the barrier para-
meter is at 0.03 (0.2), the non-negativity constraint just binds when kit = 1:74
(kit = 0:94).

4.2 Euler Equation Errors

Following den Haan (2008), we de�ne the (absolute) Euler equation error as��cit � ~cit�� =~cit, where cit is date t consumption implied by an individual agent�s
optimal policy function (from the solution of the model), while ~cit is the value
of date t consumption implied by the agent�s Euler equation (3), given the
conditional expectation of her marginal utility of consumption at t+ 1:13

We calculate Euler equation errors for an employed agent and for an un-
employed agent on a grid of values of the beginning-of-period capital stock kit
in the range [0; 100] (step size: 0.01). For the economy without aggregate un-
certainty, Panel A of Table 1 reports average and maximum Euler equation
errors for di¤erent value for the barrier parameter �; and also Euler equation
errors at selected values of kit: When � = 0; the average Euler equation er-
ror, across all grid points for kit, is 1:64% for an unemployed agent, and 0:03%
for an employed agent. Euler equation errors are very small (10�7 � 10�8

for the unemployed agent and 10�9 � 10�11 for the employed agent) when
the beginning-of-period capital stock is larger than four. Errors are smallest
around the steady state capital stock (= 37:99). However, Euler equation er-
rors increase as the beginning-of-period capital stock approaches zero. Errors
are largest when the beginning-of-period capital stock is zero (for an employed
agent), and at the point where the zero-capital constraint is just binding (when
the agent is unemployed).14

Recall that when the perturbation solution generates negative individual
capital, we enforce the non-negativity constraint by simply setting the capital
stock to zero (while consumption is recalculated using the budget constraint);
the adjusted capital stock and consumption do not satisfy the Euler equation.
This explains the large Euler equation errors for low beginning-of-period capital
stocks.
Panel B of Table 1 shows results for a model variant in which the non-

negativity constraint on individual capital is removed. In that variant, Euler
equation errors are very small (10�7 � 10�9), even for beginning-of-period
capital stocks close to zero.
When the barrier parameter is increased, in the model with a non-negativity

constraint, then Euler equation errors at low capital stocks fall (as the likelihood
of hitting the non-negativity constraint falls), but errors for large capital stocks
increase. This is documented in Panel A, where errors for � = 0:03 and � =

13We compute conditional expectations using discrete-state Markov probabilities, but (as
before) policy functions are based on continuous-state shock processes.
14By contrast, errors of deterministic equations (budget constraints) are almost zero across

the whole range of individual beginning-of-period capital stocks.
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0:2 are reported. In the economy without aggregate uncertainty, the barrier
parameter � = 0:030 minimizes the sum of Euler equation errors across all grid
points for individual capital in the range [0; 100]; and across the two values of the
individual employment status "it 2 f0; 1g :15 The same value of � also minimizes
the sum of Euler equation errors in the economy with aggregate uncertainty.16

Panel C of Table 1 shows results for a quadratic model solution. That
solution generates only slightly smaller Euler equation errors than the linear
solution.

4.3 Behavior of Individual and Aggregate Variables

Table 2 shows how some properties of individual and aggregate variables are
a¤ected by the value of �; for the economy with aggregate uncertainty. All
statistics are based on the 10; 000 period sequence for the individual employment
status and TFP, as well as the initial cross-sectional distribution of capital
described in den Haan, Judd and Juillard (2008). We use den Haan�s (2008) non-
stochastic simulation method based on individual policy functions, to generate
the date t+ 1 distribution of capital across agents, given the distribution at t.
When � = 0, then 1:34% of agents (across all states) are at the zero capital

constraint. Raising the barrier parameter to 0:2 decreases the fraction of agents
at the zero lower bound to 0:00019%.
The times series volatility of individual capital stocks decreases, when � is

increased. As discussed above, with a higher barrier parameter, the slope of
the individual policy function (for capital) decreases; thus individual capital
becomes less persistent, and its standard deviation falls. The volatility of the
rental rate, the wage rate, aggregate GDP and aggregate consumption (implied
by the aggregation procedure of the non-stochastic simulation method) is essen-
tially una¤ected as � is increased from 0 to 0.03, but it falls slightly when � is
increased from 0.03 to 0.2.17

5 Results for the Setup With a Large (but Fi-
nite) Number of Agents

This section discusses results for the model variant with a large (but �nite)
number of agents. For the economy with aggregate uncertainty, Figure 2 (Panel
A) shows an unemployed household�s decision rule for capital holdings at the end

15A simple grid search (with step size 0.001) was used to determine the value of � that
minimizes the sum of errors.
16 In the economy with aggregate uncertainty, we evaluate Euler equation errors on the same

grid for individual capital holdings of unemployed and employed agents, and that for states
with high and low TFP (we set the aggregate capital stock at its steady state level); � = 0:03
minimizes the sum of errors across all grid points and states.
17 In contrast, � does not a¤ect the volatility of aggregate quantities generated by the

�representative-agent set-up�.
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of period t, kit+1 (as a function of k
i
t), in a state with low TFP (at = 0:99):

18 The
barrier parameter is set at � = 0:03. As the number of agents rises from N=10 to
N=70, the policy function approaches the policy function of the �representative-
agent setup� considered in the previous section.19 Policy functions in other
individual/aggregate states (employed agent, high TFP) have the same property.
Panel B of Figure shows that the time-series volatility of the wage rate and

of the rental rate of capital falls as the number of agents rises (again, � = 0:03
is used).20 The time-series volatility of individual consumptions and capital
holdings stabilizes once N is increased above 40 (not reported in Figure).

6 Conclusion

This paper has shown how to apply a perturbation method to solve an incomplete-
markets model with a continuum of heterogenous agents and occasionally-binding
inequality constraints. Traditionally, perturbation methods have not been used
to solve this type of model. To make the problem here amenable to a perturba-
tion method, we replace the heterogenous-agent model by an economy with a
single agent who faces factor prices generated by a simple representative-agent
setup; we also consider a model variant with a large (but �nite) number of
agents. We use a �barrier method�to obtain a problem with only equality con-
straints. The accuracy of the solution can be low when the individual capital
stock is very close to zero; however, accuracy is satisfactory for larger individual
capital stocks. The key bene�t of the method presented here is that it is much
easier to use, and much faster, than other techniques. Hence, the results here
suggest that perturbation methods deserve to be considered by researchers who
study heterogeneous-agent economies, as well as economies with occasionally-
binding inequality constraints.

18The beginning-of-period capital holdings and employment of the remaining agents are set
at steady state levels.
19 In a heterogenous agent setting, den Haan (1996) investigated how model statistics change

as the number of agents increases. den Haan (1997) compared a model with a continuum of
agents to a model with a large number of agents (N = 100; 000) and found that both models
have similar properties.
20The standard deviations reported for a given value of N are averages of standard deviations

computed for each of 100 simulation runs with 1,000 periods (�rst 100 periods removed). Each
simulation is based on individual employment and TFP series generated using the discrete-
state Markov processes.
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Table 1. Model without aggregate uncertainty: Euler equation errors  
 
A. Benchmark specification with non-negativity constraint for individual capital holdings  
 Unemployed agent Employed agent 

Beginning-of-period 
capital i

tk  φ =0 φ =0.03 φ =0.2 φ =0 φ =0.03 φ =0.2 

0 0.694 0.657 0.528 0.034 0.021 0.028 
0.05 0.651 0.608 0.461 0.033 0.020 0.028 
0.1 0.608 0.560 0.394 0.032 0.019 0.028 
0.5 0.260 0.170 0.142 0.024 0.010 0.027 
1 0.174 0.317 0.422 0.014 0.001 0.026 
2 0.985 0.587 0.030 1.1E-09 0.003 0.025 
5 1.06E-07 0.0026 0.026 1.0E-09 0.002 0.021 
10 1.04E-07 0.0022 0.019 8.6E-10 0.002 0.016 
20 9.91E-08 0.0013 0.010 5.2E-10 0.001 0.009 
40 9.12E-08 3.7E-06 4.0E-05 7.0E-11 1.2E-04 0.001 
60 8.44E-08 0.0010 0.006 5.8E-10 0.001 0.006 
80 7.85E-08 0.0018 0.010 1.0E-09 0.002 0.010 

100 7.32E-08 0.0025 0.013 1.4E-09 0.002 0.013 
Maximum error 1.0157 0.9242 0.5963 0.0339 0.0209 0.0278 

i
tk  at maximum error 1.97 1.63 0.84 0 0 0 

Average error 0.0164 0.0139 0.0134 0.0003 0.0014 0.0088 
       

B. Model variant without non-negativity constraint for individual capital holdings
Beginning-of-period i

tk  φ =0 φ =0.03 φ =0.2 φ =0 φ =0.03 φ =0.2 

0 1.084E-07 0.00316 0.0336 1.219E-09 0.0029 0.0278 
0.5 1.081E-07 0.00311 0.0327 1.200E-09 0.0028 0.0271 
1 1.079E-07 0.00305 0.0318 1.181E-09 0.0028 0.0264 
2 1.074E-07 0.00295 0.0301 1.144E-09 0.0027 0.0250 
5 1.06E-07 0.00264 0.0256 1.0E-09 0.0024 0.0213 
       

C. Comparison between linear and quadratic approximations (φ = 0)  
  Linear   Quadratic Linear   Quadratic 

Maximum error 1.0157  1.0104 0.0339  0.0337 
i
tk  at maximum error 1.97  1.96 0  0 

Average error 0.0164  0.0164 0.0003  0.0003 
 
 
Note:  The Table shows a household’s date t Euler equation error (see Sect. 4.2), for different values of 
the household’s beginning-of-period capital stock i

tk . Maximum and average errors are calculated on a 

grid for i
tk  between 0 and 100 (step size: 0.01). Columns (2)-(4) [(5)-(7)] pertain to an unemployed 

[employed] household.  φ : barrier parameter. 
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Table 2. Model with aggregate uncertainty: selected predictions 
 
  Barrier parameter 

Model property φ =0 φ =0.03 φ =0.2 
Fraction of agents holding zero 

capital, across all states  1.3426% 0.0067% 0.00019% 
Fraction of agents holding zero 
capital, in state with high TFP 0.8930% 0.0032% 0.00001% 
Fraction of agents holding zero 
capital, in state with low TFP 1.7689% 0.0100% 0.00035% 
Std(individual consumption) 0.230 0.151 0.171 
Std(individual capital stock) 18.096 7.645 4.190 

Std(rental rate) 0.0011 0.0011 0.0010 
Std(wage rate) 0.0205 0.0205 0.0167 

Std(GDP) 0.1312 0.1315 0.1293 
Std(aggregate consumption) 0.0480 0.0481 0.0410 

 
 
Note: The Table shows simulation results based on the 10,000 period sequences for 
TFP and an individual’s employment status, as well as on the initial cross-sectional 
distribution of capital provided by den Haan, Judd and Juillard (2008). den Haan’s 
(2008) non-stochastic simulation procedure is used to generate next period's capital 
distribution. Std: standard deviation (of simulated time series).  
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Figure 1. Model with aggregate uncertainty: policy function of 
unemployed household (state with low TFP) 
 
An unemployed household’s end-of-period capital holdings, in a state with low TFP, are shown 
as a function of the household’s beginning-of-period capital stock, for different values of the 
barrier parameter φ :  0, 0.03, 0.2.φ =  
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A. Policy function of unemployed household (state with low TFP):  
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B. Standard deviations of wage and rental rates as a function of the number of agents 
 

  Std(wage rate)          Std(rental rate) 

  
Figure 2. N-agent model with aggregate uncertainty: quantitative predictions 
 
Panel A shows an unemployed household’s end-of-period capital holdings, in a state with low TFP, 
as a function of the household’s beginning-of-period capital stock, in the N-agent model (with 
N=10, 30, 70), and in the ‘representative-agent’ model (see line labeled ‘Rep agent’). The barrier 
parameter is set at 0.03.φ =  
Panel B shows the standard deviations (Std) of the wage rate and of the rental rate of capital, as a 
function of N.  


