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Abstract

This paper compares numerical solutions to the model of Krusell and Smith (1998)

generated by di¤erent algorithms. The algorithms have very similar implications for

the correlations between di¤erent variables. Larger di¤erences are observed for (i) the

unconditional means and standard deviations of individual variables, (ii) the behavior

of individual agents during particularly bad times, (iii) the volatility of the per capita

capital stock, and (iv) the behavior of the higher-order moments of the cross-sectional

distribution. For example, the two algorithms that di¤er the most from each other

generate individual consumption series that have an average (maximum) di¤erence of

1.6% (11.4%).
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1 Introduction1

This paper compares di¤erent algorithms to solve the model of Krusell and Smith (1998), a2

popular model with a continuum of heterogeneous agents, idiosyncratic as well as aggregate3

risk, incomplete markets, and an inequality constraint on the chosen capital level.1 Models4

with heterogeneous agents and incomplete markets are becoming more and more important5

in both macro and �nance. Consequently, it is important that we know how to solve them6

well. This is not a trivial task, because (i) the set of state variables includes the cross-7

sectional distribution of income and wealth levels, a high dimensional object, (ii) the8

amount of idiosyncratic uncertainty is quite high so nonlinearities are likely to matter,9

and (iii) the occasionally binding constraint results in non-di¤erentiable policy functions.10

There are now several algorithms that can solve this type of model and in this paper11

I investigate whether the di¤erent algorithms generate similar answers when solving the12

model of Krusell and Smith (1998). The solutions turn out to di¤er substantially in several13

dimensions. This is especially true for the individual choices. Not only do the generated14

series di¤er during exceptional periods, such as particularly bad times, but there are even15

nontrivial di¤erences between the implied �rst moments. Several accuracy checks are16

performed. Overall, the algorithm of Reiter (2009b) performs best in terms of accuracy.17

It clearly performs the best in terms of the accuracy of the individual policy rules and the18

accuracy of its aggregate law of motion is close to the most accurate aggregate laws of19

motion, which are the ones obtained with the Krusell-Smith algorithm. The performance20

of the algorithm of den Haan and Rendahl (2009) is close to the performance of Reiter21

(2009b) in terms of accuracy, but slightly worse. Interestingly, the algorithms of den Haan22

and Rendahl (2009) and Reiter (2009b) are also the fastest, with the algorithm of den23

Haan and Rendahl (2009) roughly seven times as fast as the algorithm of Reiter (2009b).224

The model considered here is a nontrivial model, but there are much more complex25

1The actual version of the model considered and its parameter values can be found in den Haan, Judd,

and Juillard (2009).
2The algorithm of Kim, Kollmann, and Kim (2009) is even faster, but this algorithm does not solve the

actual model speci�ed.
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models considered in the literature. The fact that the di¤erent algorithms generate results26

that are not that similar, should motivate us to be careful in numerically solving these1

models. There are some useful lessons that can be learned from this comparison project.2

Those are the following.3

� It is essential to have an algorithm for the individual problem that does well in4

terms of accuracy as well as speed. Standard lessons from the numerical literature,5

for example, that time iteration is typically faster and more reliable than �xed-point6

iteration, should not be ignored.3 Also, the lower and upper bounds of the grid7

should be chosen with care in order not to exclude useful grid points. Grid points8

should also not be wasted; for this project, I �nd that the algorithms that use the9

largest range for individual capital also have lower accuracy. Finally, the method of10

endogenous grid points, proposed in Carroll (2006), is recommended. It is not clear11

whether this leads to a more accurate solution, but it is de�nitely faster and makes12

it, for example, easy to implement time iteration.13

� It is important to realize that the properties of an algorithm found when solving for14

individual policy rules in the model without aggregate uncertainty, i.e., for a �xed15

capital stock level, do not carry over to the model with aggregate uncertainty, even16

when taking as given the law of motion for aggregate capital. In particular, this17

paper shows that it is more di¢ cult to get accurate individual policy rules in the18

model with than in the model without aggregate uncertainty (even when taking the19

aggregate law of motion as given).20

� In solving models with a representative agent, it is typically possible to achieve21

arbitrary accuracy. None of the algorithms considered here do extremely well in22

terms of all the accuracy tests. Especially the outcomes of the accuracy test for23

the aggregate policy rule are somewhat disappointing.4 The maximum errors in a24

simulation of 10,000 observations vary across algorithms from 0.156% to 1.059%.25

3See Chapter 16 in Judd (1998) for a discussion.
4This paper uses a more demanding (but much better) accuracy test than the R2 that is typically used

in the literature.
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Ideally, these should be at least a factor 10 smaller than the lowest values generated1

here.2

� Given that it is not (yet) easy to generate numerical solutions with arbitrary ac-3

curacy, it is important to perform accuracy tests. The role of a good accuracy4

procedure consists not only of providing a measurement of the accuracy of the so-5

lution, but also of making clear which aspect of the solution is inaccurate when and6

whether the inaccuracies found matter.7

� Algorithms and computers will get better and the model considered in this paper8

will hopefully soon be solved with arbitrary accuracy. But models are likely to get9

more complex at a faster rate, so numerical solutions will be generated that� like10

those considered in this paper� do reasonably well, but not exceptionally well in11

all accuracy tests considered. The question is what to do in such cases. Numerical12

solutions can fail accuracy tests and still give the right answer to the question the13

researcher is interested in.5 The best accuracy test is, therefore, to "play around"14

with di¤erent choices, such as di¤erent classes of approximating functions and/or15

di¤erent grids, and to see whether the results of interest change. It would be even16

more convincing if the results do not change if a di¤erent algorithm is used to solve17

the model. Algorithms di¤er substantially in their programming burden. But both18

the popular Krusell-Smith algorithm and the recently developed algorithm of den19

Haan and Rendahl (2009) are quite simple to program, so the researcher does no20

longer have a good excuse not to try more than one algorithm.21

This paper is organized as follows. In section 2, I give a brief overview of the di¤erent22

algorithms used. In section 3, I discuss the di¤erences between the algorithms in solving23

a model without aggregate uncertainty and in section 4 I discuss the di¤erences between24

5Some accuracy tests are directly linked to properties of interest. Santos (2000) relates the Euler

equation residual to errors in the policy function. Reiter (2001) and Santos and Peralta-Alva (2005)

construct a relationship between the size of the errors found and an upperbound on the error for objects

economists could be interested in such as the obtained utility level or moments.
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the algorithms in solving the full model, that is, the model with aggregate uncertainty.1

The last section concludes.2

2 Di¤erent types of algorithms3

Recursive numerical solutions of DSGE models consist of functions of the state variables.4

Existing algorithms are based on either the projection method or the perturbation method,5

sometimes on both. The projection method consists of two steps. In the �rst step, a grid6

of the state variables is constructed and one de�nes at each grid point error terms that7

provide a measure for the �t of any approximating function.6 The second step consists of8

choosing the coe¢ cients of the numerical approximation to obtain the best �t for a given9

loss function of the error terms.7 The perturbation approach solves for the coe¢ cients of10

the Taylor expansion of the true set of policy functions, h(x), around the steady state.11

Using h(x), the choice variables can be substituted out of the model equations and one12

obtains a system of equations with x as the only variable, that is, F (x) � 0. The unknown13

coe¢ cients of the Taylor expansion are found by sequentially di¤erentiating this system14

of equations and evaluating the obtained equations at the steady state.15

Three of the participating algorithms are projection methods. Those are the backward16

induction procedure, referred to as BInduc throughout this paper, developed in Reiter17

(2009b), the parameterized distribution procedure, referred to as Param, of Algan, Allais,18

and den Haan (2009), and the explicit aggregation algorithm, referred to as Xpa, developed19

in den Haan and Rendahl (2009). These algorithms are summarized in the subsection20

on projection approaches. The popular Krusell-Smith algorithm, referred to as KS, was21

developed in Krusell and Smith (1997, 1998). Two versions of this algorithm are used in22

this project. They di¤er in how the panel of individual data is simulated. The algorithm of23

Young (2009), referred to as KS-num, uses a numerical procedure to simulate an economy24

with a continuum of agents, and the algorithm of Maliar, Maliar, and Valli (2009), referred25

6Numerical procedures, such as quadrature methods to calculate conditional expectations, may still be

needed to calculate the value of the error terms.
7Or obtain a perfect �t if there are as many grid points as unknown coe¢ cients.
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to as KS-sim, follow Krusell and Smith (1997, 1998) and use a �nite number of agents.1

The KS algorithm is a hybrid procedure, because it uses a standard projections approach2

to solve for the individual policy rule, but a simulation step to solve for the law of motion3

of the aggregate variables. The algorithm of Kim, Kollmann, and Kim (2009), referred4

to as Penal, is based on the perturbation approach. To be able to use the perturbation5

method, Kim, Kollmann, and Kim (2009) replace the inequality constraint by a smooth6

penalty function.7

In the remainder of this section, I give a very brief description of the di¤erent algorithms8

that are part of this comparison project and of the algorithms of Preston and Roca (2006)9

and Reiter (2009a), that are not. For a more detailed description, I refer the reader to the10

papers in this issue and to Algan, Allais, den Haan, and Rendahl (2008). The participants11

and the abbreviations of the algorithms are given in Table 1.12

KS algorithm. The di¤erent algorithms have in common that they follow den Haan13

(1996, 1997), Krusell and Smith (1997, 1998), and Ríos-Rull (1997) in summarizing the14

cross-sectional distribution of capital and employment status with a limited set of mo-15

ments. The KS algorithm speci�es a law of motion for these moments and �nds the16

approximating function using a simulation procedure. That is, given a set of individual17

policy rules, a time series of cross-sectional moments is generated and new laws of motion18

for the aggregate moments are estimated using the simulated data. KS-sim simulates the19

economy using a �nite number of agents, whereas KS-num uses a numerical procedure20

to simulate using a continuum of agents. The latter has the advantage of avoiding cross-21

sectional sampling error.8 Given the aggregate law of motion, the laws of motion of the22

individual variables are then updated using standard projection methods.23

Projection methods I: parameterization of the cross-sectional distribution.24

BInduc and Param solve the model using tools from the projection approach. They do25

not obtain next period�s cross-sectional moments by simulation techniques, but by explic-26

8The KS algorithm relies on the idea that next period�s moments are perfectly forecastable, which is at

best approximately true in a simulation with a �nite number of agents.
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itly integrating the individual choices. This allows them to avoid a disadvantage of the1

algorithm of Krusell and Smith (1998), namely that the points at which the aggregate law2

of motion is determined are chosen ine¢ ciently.93

BInduc and Param avoid using simulation techniques to solve for the coe¢ cients of4

the approximating functions by parameterizing the cross-sectional distribution. BInduc5

uses a histogram and Param a �exible polynomial. The time-varying coe¢ cients of the6

cross-sectional distribution are then the state variables. Both BInduc and Param, still7

use moments as state variables, but specify a mapping from cross-sectional moments to8

the coe¢ cients of the cross-sectional distribution. It is not easy to implement this pure9

projections procedure. The main reason is that describing the cross-sectional distribution10

accurately requires several coe¢ cients and, thus, quite a few state variables. To deal with11

this problem, both BInduc and Param reduce the number of coe¢ cients and, thus, the12

number of state variables by using a simulation to learn about the appropriate shape of13

the cross-sectional distribution. The simulation part of the algorithm ful�lls, however,14

only a supporting role in the algorithm.15

Another problem of these two algorithms is that it is not always clear how to con-16

struct a sensible density. For example, if moments are used as state variables, then some17

combinations of moments may not correspond to an actual density.18

Projection method II: no parameterization of the cross-sectional distribution.19

Xpa derives the aggregate laws of motion directly from the individual policy rules by sim-20

ply aggregating them. Xpa avoids numerical integration techniques and the need to specify21

a cross-sectional distribution, as is done by BInduc and Param, by writing the individual22

policy functions as a linear combination of basis functions of the individual state vari-23

ables.10 This analytic approach makes immediately clear that at least the cross-sectional24

averages of all the basis functions that enter the individual policy functions should be state25

variables. In fact, a strict implementation of the idea of explicit aggregation implies that26

9Just like in standard regression analysis, one would like the explanatory variables to be spread out,

whereas in simulated data, they tend to be clustered around the mean.
10There is no restriction on how aggregate variables enter.
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all higher-order cross-sectional moments, i.e., an in�nite set, should be included, unless1

the individual policy function is exactly linear. Xpa deals with this in�nite dimensionality2

issue as follows. Suppose that the individual policy rule for xt+1 is a second-order polyno-3

mial of xt. Explicit aggregation implies that the cross-sectional means of xt and x2t should4

de�nitely be included as a state variable. Predicting the cross-sectional average of x2t+15

requires an approximation for x2t+1. Instead of using the square of the policy function for6

xt+1, which would include fourth-order terms, Xpa uses an auxiliary policy rule that is7

also of second-order. The cross-sectional average of x2t+1 can then be obtained by explicitly8

aggregating this auxiliary policy rule.9

The individual policy function used to obtain the law of motion of the aggregate10

variables does not have to be the same as the individual policy function used to describe11

individual behavior. In particular, Xpa uses splines for the individual policy, but uses a12

smooth approximation to the spline to obtain the aggregate law of motion.11 Xpa is a13

standard projection technique and can use all the standard tools such as optimal location14

of the grid points.15

Perturbation approaches. The approximating functions used by perturbation tech-16

niques are continuous and di¤erentiable. Consequently, they are not well suited for a17

model like the one considered here with occasionally binding constraints. Preston and18

Roca (2006) solve a model very similar to the one considered here, but with the borrowing19

constraint replaced by a penalty function and the �nite-state Markov process replaced by a20

stochastic process with continuous support. Kim, Kollmann, and Kim (2009), like Preston21

and Roca (2006), replace the borrowing constraint by a penalty function and use a sto-22

chastic process with continuous support, but they do not use the perturbation approach23

to obtain the aggregate laws of motion the way Preston and Roca (2006) do. Instead,24

11The requirement that the cross-sectional moment of each basis function has to be a state variables

makes clear that explicit aggregation could be quite expensive if splines are used to approximate the

individual policy function. Splines can still be written as a linear combination of basis functions (B-

splines), but typically quite a few nodes and, thus, quite a few basis functions are used. Consequently,

quite a few cross-sectional moments would have to be included as state variables.
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they simply use the solution from a representative-agent economy without a constraint or1

penalty function as the aggregate law of motion. Consequently, they solve a model that2

di¤ers in two aspects from the model solved by the other participants. First, the penalty3

function limits borrowing in a di¤erent way than the borrowing constraint. Second, the4

law of motion for aggregate capital is not derived from the law of motion for the individual5

variable. Comparison of the solution of Penal with the others is like comparing apples and6

oranges. Nevertheless, it will be interesting to see how far o¤ the solution obtained using7

this method is, because this algorithm solves the model in less than 1 second, which is8

much faster than any of the other algorithms.9

There are two important algorithms that are not part of this comparison project.10

The �rst is the "pure" perturbation approach of Preston and Roca (2006). Unlike Kim,11

Kollmann, and Kim (2009), they derive both the individual and the aggregate laws of12

motion using a standard perturbation approach. A nice feature of the approach of Preston13

and Roca (2006) is that there is a very direct link between the individual policy rule and14

the corresponding aggregates, similar to the link established by Xpa.15

A fair comparison of the algorithm of Preston and Roca (2006) with the ones considered16

here would require using a penalty function instead of a non-negativity constraint on17

capital. The same is, of course, true for the Penal algorithm of Kim, Kollmann, and Kim18

(2009). The model of this project has a non-negativity constraint, because it is commonly19

used in the literature. The use of this type of constraint in the literature seems to be20

mainly motivated by common practice and by its convenience in terms of calibration,21

not by realism. Penalty functions imply that there are costs associated with lower levels22

of capital and with short positions in capital, that increase as capital decreases. The23

borrowing constraint also corresponds to a penalty function, namely one that is zero for24

non-negative capital stocks and in�nite for negative values. It is obviously not sensible to25

argue that this extreme choice is to be generally preferred to smooth penalty functions.1226

12Perturbation approaches use the derivatives at the steady state to solve the model. Consequently,

low-order perturbation approaches require that the penalty function is not too �at at the steady state.

den Haan and de Wind (2008) investigate the ability of the perturbation approach to solve models with

di¤erent types of penalty functions accurately.
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The second missing algorithm is the hybrid perturbation/projection approach of Reiter1

(2009a). This algorithm starts out by solving the model without aggregate uncertainty2

using projection methods. Since projection methods are used, the individual policy func-3

tions can easily deal with non-di¤erentiabilities caused by features such as borrowing4

constraints. The next step is a perturbation step. The solution of the �rst step consists5

of the coe¢ cients of the individual policy function,  1, and the coe¢ cients that describe6

the cross-sectional distribution,  2. The idea is to perturb this solution for  1 and  27

around the case of no aggregate uncertainty. The coe¢ cients  1 and  2 are like the vari-8

ables in a standard perturbation analysis and the question is how they change if aggregate9

uncertainty is being introduced. That is, the procedure of Reiter (2009a) describes how10

individual behavior changes with changes in the amount of aggregate uncertainty.11

Computational speed. Table 2 reports the time it takes for the di¤erent algorithms12

to solve the model when  is equal to 1.1, taking as initial conditions the solution of13

the model when the coe¢ cient of relative risk aversion, , is equal to 1.13 One always14

should be careful in interpreting these numbers. They may say more about the work the15

di¤erent participants put into writing a fast algorithm, than about the lowest possible16

computing time that is attainable with the di¤erent algorithms. For a project like this17

one, in which only one model is solved, speed is not that important. Despite these caveats,18

the di¤erences in computing times are so large that some useful lessons can be drawn.19

There are enormous di¤erences in speed across the di¤erent algorithms. Penal takes20

less than one second, but this algorithm only solves two individual problems. Nevertheless,21

perturbation algorithms are likely to outperform projection procedures in speed. Therefore,22

future research should compare solutions to complex models with heterogeneous agents23

solved with perturbation approaches, like the one developed by Preston and Roca (2006),24

with the solutions obtained with projection procedures.25

Even when we only focus on the algorithms that solve the actual model with heteroge-26

neous agents, then there are enormous di¤erences. The fastest algorithm is Xpa that takes27

13The programs were run on a Dell Latitude D410 with an Intel Pentium M processor (2.00 GHz, 798

Mhz FSB).
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less than 7 minutes and the slowest is Param that takes 2,739 minutes, almost 400 times1

as slow as Xpa. BInduc is second with 47 minutes and the two KS algorithms are similar2

with computing times of 324 and 310 minutes for KS-num and KS-sim, respectively.3

It is clear, why Xpa is fast. The most important reason is that explicit aggregation4

makes it possible to get the aggregate policy rules from the individual policy rules almost5

instantaneously. But another important reason is that the individual problem is solved6

e¢ ciently. In particular, Xpa (i) uses time iteration instead of �xed-point iteration, (ii)7

uses endogenous grid points so that there is not a complex non-linear problem at each grid8

point, and (iii) uses an e¢ cient grid.9

It is also clear why Param is so slow. The �rst reason is that it uses the largest number10

of aggregate state variables. In particular, it uses four aggregate state variables in addition11

to the current aggregate state, at. The second reason is that in addition to the individual12

and the aggregate problem it also has an outer loop to obtain information about the13

correct shape of the cross-sectional distribution. The third reason is that it has to solve14

a non-linear problem in determining which cross-sectional distribution corresponds to the15

set of moments. Moreover, the individual problem is solved ine¢ ciently. The �rst time the16

algorithm solves for the individual policy rule, for a given aggregate law of motion, it takes17

roughly 590 minutes.14 It takes so long, not only because of the many state variables, but18

also because Param uses �xed-point iteration and to ensure convergence, it has to use a19

very low updating coe¢ cient.20

3 Results for the model without aggregate uncertainty21

In this part of the paper, I focus on the model without aggregate uncertainty. In particu-22

lar, the aggregate capital stock is equal to 43 (not the equilibrium value), the probability23

of moving out of employment (unemployment) is equal to 0.4 (0.955555), and the unem-24

ployment rate is equal to 0.10.25

14The later individual problems take less time, because they have better starting values, but the speed

of this �rst individual problem is still indicative of the slowness of Param.
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3.1 Information about computational intensity1

The solution of this version of the model consists of an individual capital choice as a2

function of the beginning-of-period capital stock, for the employed and the unemployed.3

Participants were required to solve this individual problem with the same computational4

complexity as they used to solve the individual problem in the model with aggregate5

uncertainty. For example, if 100 equidistant grid points for k in the interval [0; 100] were6

used when solving the model with aggregate uncertainty, then they had to do the same7

for the version without aggregate uncertainty.8

Information about these choices is given in Table 3. The di¤erences in the number9

of nodes and the range considered are enormous and these di¤erences turn out to be10

important. None of the algorithms used equidistant nodes to construct the grid for k.11

Most used a transformation of k to obtain a grid with more nodes close to the constraint.1512

BInduc and KS-num use value function iteration to solve for the individual policy rule and13

the other algorithms use a method that is based on the Euler equation.14

3.2 Policy functions15

Panels A & B of Figure 1 plot the policy functions for the capital choice of the unemployed16

and the employed agent, respectively. The �gure only plots the policy function for low17

values of capital to highlight the behavior around the kink. The policy functions generated18

by BInduc, KS-num, KS-sim, Param, and Xpa are indistinguishable from each other. The19

policy function generated by Penal, however, clearly di¤ers from the others. According20

to the Penal algorithm, the capital choices of both the unemployed and the employed lie21

below those generated by the other algorithms. These di¤erences do not disappear when22

a broader range of values for the capital input are considered. The di¤erent predictions23

of the Penal solution also show up in Table 4, that reports the value of capital at which24

the constraint is just binding for an unemployed agent.25

Panels C & D of Figure 1 zoom in on the di¤erences between the policy functions26

(excluding Penal) by plotting the di¤erences between the indicated policy function and27

15For example, BInduc uses equidistant nodes for ln(k + 0:1w), where w is the steady state wage rate.
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the policy function of BInduc. The largest di¤erences are typically (but not always)1

observed for low values of capital, which is not surprising given the nearby presence of2

the constraint. Panel C plots the di¤erences between Xpa and BInduc and between KS-3

num and BInduc. For low values of capital the di¤erences between Xpa and BInduc4

are very small, whereas they are substantially larger between KS-num and BInduc. For5

larger values of the capital stock the di¤erences between KS-num and BInduc disappear.6

Between Xpa and BInduc, however, there remains a systematic di¤erence that increases7

slightly with the capital level. The di¤erences remain small, however. At k = 50 the8

di¤erence is equal to 0.00118, which is equal to 0.0024% of the capital choice made.9

Panel D plots the di¤erences between KS-sim and BInduc and between Param and10

BInduc. The di¤erences between KS-sim and BInduc are similar to the di¤erences between11

KS-num and BInduc. In particular, for larger values the di¤erences disappear. The12

di¤erences between the BInduc & Param policy function do not disappear for larger values13

of the capital stock. In contrast to the di¤erences between Xpa and BInduc, which also14

did not disappear for larger capital stocks, they are not systematic; instead, they oscillate15

around zero. Again, the magnitudes of the di¤erences are small.16

3.3 Simulated series17

For a given sequence of 10,000 realizations of the employment status, time series for18

consumption and capital are generated. Table 5 reports some summary statistics for the19

generated series. The statistics of the di¤erent algorithms are extremely similar except20

for those generated with Penal. For example, Penal generates a standard deviation for21

consumption (capital) that is 26% (93%) lower (higher), than the corresponding value22

generated by the other algorithms. The mean capital stock generated with Penal is more23

than twice as high as the mean implied by the other algorithms. The penalty function24

used by Penal provides a strong incentive for agents to accumulate savings. The borrowing25

constraint imposed by the other algorithms also induce agents to save more, but much less26

so.27

Panels A and B of Figure 2 plot the �rst 1,000 observations for consumption and28
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capital, respectively. The series generated by the Penal algorithm are clearly di¤erent,1

whereas the series generated by the other �ve algorithms are indistinguishable from each2

other. The consumption series generated by the Penal algorithm increase (decrease) by too3

little when the agent is employed (unemployed). For capital, the series generated by the4

Penal algorithm are more volatile than the series generated by the other algorithms. The5

increased popularity of perturbation techniques will make it more likely that authors will6

modify models as is done by Kim, Kollmann, and Kim (2009). The results reported here7

make clear that such modi�cations can lead to substantially di¤erent model properties.168

3.4 Accuracy tests9

Standard Euler-equation accuracy test. Table 6 reports information about the er-

rors of the Euler equation. Euler-equation errors are calculated on a grid for capital ranging

from 0 to 100 with a step size equal to 0:01. The error is calculated as follows. Let c(k)

be the consumption value according to the proposed numerical solution and let �c(k) be

the consumption choice implied by the explicitly calculated conditional expectation. The

Euler-equation error is then given by

100

����c(k)� �c(k)�c(k)

���� :
Xpa attains the smallest errors, but the errors of BInduc and KS-num are of similar10

magnitude. Note that Xpa uses the second-largest number of nodes for k, namely 250,11

and the second-smallest range for k. The largest errors are attained by either Param when12

one looks at the errors for an unemployed agent or by Penal when one looks at the errors13

for an employed agent. The errors of KS-sim are uniformly better than those of Param14

and Penal, but they are not substantially smaller.15

This accuracy test only checks for inaccuracies by looking one-period ahead and so16

would not detect the possibility of tiny errors accumulating to larger errors. The next two17

tests are better equipped to detect this possibility.18

16den Haan and de Wind (2008) investigate how properties (true properties and those obtained with

low-order perturbation approximations) of models with a penalty function di¤er from the corresponding

properties of models with an inequality constraint.
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Dynamic Euler-equation accuracy test. The idea behind the dynamic Euler-equation1

accuracy test is to compare a time series for kt, that is generated with a numerical solution,2

kt+1 = k(kt; "t), with an alternative series ~kt, that is constructed as follows.3

� ~k1 = k1,4

� k̂t+1 = k(~kt; "t), where k̂t+1 is only a temporary variable,5

� use k̂t+1 and k(k̂t+1; "t+1) for the two possible realizations for "t+1 to calculate the6

conditional expectation, and7

� use the Euler equation and the budget constraint to calculate ~kt+1 and the corre-8

sponding level of consumption, ~ct.179

That is, ~kt+1 is calculated each period as it is directly implied by the budget constraint10

and the Euler equation; the numerical solution is only used indirectly, namely to calculate11

the conditional expectation.12

The results are reported in Table 7. For BInduc, KS-sim, and Xpa, the errors, even the13

maximum errors, are low. For KS-num, Param, and Penal, however, the maximum errors14

are much higher for this dynamic Euler-equation accuracy test, than for the standard15

Euler-equation test; for consumption they are equal to 3.8%, 48%, and 499%, respectively.16

The dynamic Euler-equation test is a very stringent test and an occasional large error17

does not necessarily mean that the solution is generally bad. For example, Figure 3 plots ct18

and ~ct according to Param for the �rst 100 observations, which includes the observation for19

which the maximum error of 48% is attained. The two series are virtually indistinguishable20

from each other, except when ct takes on an extremely low value. Moreover, around and21

at the observation where the maximum error occurs, the series for ct generated by Param22

are virtually identical to the series for ct generated by BInduc, one of the algorithms that23

has very low errors. That is, the inaccuracy of Param lies in calculating at extreme low24

17Strictly speaking one does not need the temporary variable k̂t+1. An alternative would be to solve for

~kt+1 directly from the budget constraint and the Euler equation, but this would require solving a somewhat

complex non-linear problem each period.
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points the conditional expectation, which integrates over some states that are even more1

extreme.2

One might conclude from the discussion above that this accuracy test is too stringent.3

But some algorithms do manage to generate very small errors, so it is possible to pass4

this demanding test. Moreover, the size of the errors reported here for the model without5

aggregate uncertainty is an indication of how well the algorithm solves the individual6

problem of the model with aggregate uncertainty, but then the errors turn out to be7

substantially larger, even though the complexity of solving the individual problem is kept8

the same.9

DHM statistic. The DenHaan-Marcet (DHM) statistic, proposed in den Haan and10

Marcet (1994), checks whether the Euler-equation error is orthogonal to elements in the11

agents� information set using simulated data. Like the dynamic Euler-equation test, it12

checks whether errors accumulate, puts less weight on those observations that occur less13

frequently, and puts no weight on those parts of the state space that are not part of the14

simulation. The latter two properties can in some cases be advantages, but de�nitely not15

in all. For example, if a solution incorrectly diverts the simulated time path towards a16

part of the state space where the errors are small, one would get a misleading answer from17

this test.18

Table 8 reports the results for the DHM accuracy test. Because of the constraint,19

we focus on the Euler-equation error times the capital choice; this product should be20

orthogonal to elements of the information set in each period t. The choice of instrument21

doesn�t seem to matter and we simply choose the constant. That is, we check whether22

the average of this product is equal to zero. We use a sample set of 500 observations, i.e.,23

T = 500. Given that the participants provided a sample of 10,000, we can do the test 2024

times.25

In constructing the earlier accuracy test statistics for Penal, the modi�ed version of26

the model, i.e., with the penalty function instead of the inequality constraint, is used.27

Here we check whether the Penal algorithm generates an accurate solution for the model28

without the penalty function, but with the inequality constraint. The DHM statistic29
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makes clear that the Penal solution is extremely inaccurate as a solution for the model1

with the inequality constraint. A value of T equal to 500 is a relatively low value for the2

DHM statistic,18 but even at this relatively low value for T , the Penal solution is rejected3

in each of the 20 samples. The statistics for the other algorithms are much better. Using4

a 5% con�dence level, they fail in exactly 5% of the cases.5

Discussion. Getting better accuracy for the version of the model without aggregate6

uncertainty is simply a matter of adding and/or relocating grid points. This version of7

the model is still cheap to solve, so grid points can easily be added. But choices like the8

number of grid points had to be the same in the versions of the model with and without9

aggregate uncertainty. This means that it is easier to add grid points for algorithms like10

Xpa that can also solve the model with aggregate uncertainty fast. That Param and Penal11

perform worse is not that surprising. Param uses smooth polynomials, only 50 grid points12

for k, and even less coe¢ cients. Even though Param only �ts the polynomial on that part13

of the state space where the constraint is not binding, splines are likely to do better than14

polynomials for problems with inequality constraints.19 That Penal performs worse is not15

surprising given that it uses a lower-order approximation, whereas the other algorithms16

use much more intricate approximations.17

18For large enough T , the DHM statistic will reject any numerical solution, even if it su¤ers from very

minor inaccuracies.
19When the idiosyncratic shock has discrete support, then the constraint is likely to induce non-

di¤erentiabilities in the policy function of the unemployed, not only at the value of k when the constraint

becomes binding, but also at the levels of k that are such that the constraint will be binding in l periods

when the agent is unemployed in the next l periods. An example can be found in Figure 2 of den Haan

(1997).
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4 Results for the model with aggregate uncertainty1

4.1 Properties of the individual policy rules2

4.1.1 Individual policy rules and the implied behavior of aggregates3

For a given sequence of realizations for the aggregate shock, a time series of 10,000 ob-4

servations for the cross-sectional distribution of the capital level and employment status5

are generated using the individual policy rules of the di¤erent algorithms. The simulation6

procedure simulates the economy using a continuum of agents and, thus, avoids cross-7

sectional sampling variation.20 It is important to note that only individual policy rules8

are used; if an algorithm also solves for an aggregate law of motion, then it is not used.9

The values for the aggregate moments that are needed to determine prices or arguments of10

individual policy functions are calculated from the simulated cross-sectional distribution.11

Moments. The simulation provides time series for the cross-sectional nth-order uncen-12

tered moment of the capital stock for the employed and unemployed.21 Table 9 reports13

the mean and the standard deviation of the generated time series for the cross-sectional14

moments. For the sample mean of the �rst-order cross-sectional moment, the value gen-15

erated by the Penal algorithm is somewhat less than the values generated by the other16

algorithms. This makes sense. The aggregate law of motion of Penal is simply the solution17

to the representative-agent economy in which there is no idiosyncratic risk and there is no18

borrowing constraint. This representative agent has less reason to build up a capital stock19

as a bu¤er against large idiosyncratic shocks than the agents in the economy with idio-20

syncratic shocks. When the results for Penal are excluded, then the di¤erences between21

the mean capital stocks are quite small. For the mean (across time) of the cross-sectional22

mean capital stock of the employed (unemployed) the largest di¤erence between the algo-23

rithms is equal to 0.13% (0.19% ). For the standard deviation of the cross-sectional mean24

capital stock, the largest di¤erences are substantially larger, namely 3.2% and 2.3% for25

the employed and unemployed respectively.26

20See the appendix for details.
21For n > 1, the nth -order moment, M(n), is expressed as M(n)1=n=M(1).
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When we look at sample averages of higher-order cross-sectional moments, then sub-1

stantially larger di¤erences are observed and when we look at the generated volatility in2

these higher-order cross-sectional moments, then the di¤erences are huge. For example, for3

the (scaled) 5th-order moment the standard deviation generated by KS-sim is almost �ve4

times as large as the standard deviation generated by Param. These di¤erences are solely5

due to di¤erences in the individual policy rule, because everything else in the calculation6

of these moments is exactly the same across procedures.7

The small di¤erences in the sample means of the cross-sectional mean do not reveal8

that the time series of the cross-sectional means can be quite di¤erent and often do not9

follow each other that closely. This is documented in Table 10, that reports the average and10

the maximum absolute deviation between the cross-sectional means in the simulated data11

generated by the di¤erent algorithms. KS-num and KS-sim turn out to have simulated12

series for the cross-sectional mean capital stock that are quite di¤erent from the other13

algorithms and from each other. Figure 4 displays the simulated time series for the mean14

capital stock of the employed in that part of the sample where the largest di¤erences are15

obtained. It con�rms what is reported in the table, namely that KS-num and KS-sim16

are typically further away from the other algorithms. In this small part of the sample, it17

looks as if the di¤erences are quite systematic, but that is not true. The relative ranking18

of the series generated by the di¤erent algorithms changes frequently. The graph for the19

simulated mean capital stock of the unemployed displays a very similar pattern.20

Percentiles. Table 11 reports the means of the 5th and 10th percentiles for the capital21

holdings of the employed and the unemployed. The table reports the outcomes both22

unconditionally and conditionally on the aggregate state. This table makes very clear23

that the penalty function used by the Penal algorithm induces a completely di¤erent24

cross-sectional distribution, namely one with much less mass at lower capital stocks than25

is found by the other algorithms. When the results of the Penal algorithm are excluded,26

then there are still noticeable di¤erences between the algorithms. In contrast to the results27

discussed for the means above, the results for the percentiles are very systematic. That28

is, the relative ranking across algorithms observed for the sample means of the percentiles29
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also holds for each observation in the sample. In particular, KS-num implies the fattest1

left tail and KS-sim the thinnest right tail (when Penal is excluded).2

4.1.2 Properties of simulated individual data3

Next, simulated time series for individual consumption and capital, calculated using a4

common set of realizations for the exogenous random variables, are compared. Some5

procedures solve for an aggregate law of motion, but this is not used in generating these6

individual variables; all aggregate moments needed to calculate the individual�s choices7

are obtained from the generated cross-sectional distribution. Table 12 reports summary8

statistics for the behavior of individual consumption and capital.9

Penal versus the other algorithms. When we compare Penal with the other algo-10

rithms, then the results are much more similar for this case than they are for the case11

without aggregate uncertainty. In fact, most of the statistics generated by Penal are now12

similar to the statistics generated by the other algorithms. Possibly, the additional varia-13

tion in aggregate prices helps in aligning the Penal solution closer to the solution generated14

by the other algorithms. Another explanation is that the series in the model without ag-15

gregate uncertainty are closer to the constraint (because of the low value of the interest16

rate) and replacing the inequality constraint with a penalty function has then larger e¤ects17

on the results. However, there are still some important di¤erences. The standard devia-18

tion of individual capital implied by Penal is 26 to 30% below the corresponding numbers19

of the other algorithms and the mean of individual capital is 23 to 33% higher depending20

on the alternative algorithm considered.21

Di¤erences in moments of individual variables. Although for most statistics the22

di¤erences are small, there are some substantial di¤erences between the statistics gen-23

erated by the algorithms, even when Penal is excluded. Excluding Penal, the highest24

generated mean of the individual capital stock, obtained by BInduc, is 8.1% higher than25

the lowest generated mean capital stock, obtained by KS-num. Similarly, the highest stan-26

dard deviation of the individual capital stock, generated by KS-sim, is 6.7% higher than27
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the lowest standard deviation, generated by KS-num. These are huge di¤erences.1

Di¤erences in simulated individual variables. Table 13 reports the average and2

maximum deviation between the simulated individual capital and consumption series. For3

capital as well as for consumption, the largest di¤erences are attained by KS-num and KS-4

sim when the di¤erences are averaged across algorithms.22 This is true for both average5

and maximum di¤erences. The reason for the deviating behavior of KS-num and KS-sim6

is likely to be related to the fact that they use a much larger range for individual capital7

in the grid and less grid points.8

Figure 5 plots a subsample of the series generated by these �ve algorithms. It plots the9

series over that part of the sample when consumption and capital do not take on extreme10

values and the di¤erences are relatively small. The graph documents the di¤erences in the11

simulated series and shows that they can be quite persistent. It also indicates that the12

consumption series generated by KS-sim has some deviating dynamics when the aggregate13

state changes. Consider a change from the good to the bad aggregate state. All algorithms,14

except KS-sim, generate an initial drop followed by a less severe drop in the subsequent15

period (if the low value for the aggregate state persists). KS-sim, however, displays an16

increase for individual consumption when the aggregate state switches from the good to17

the bad outcome; individual consumption only starts to decrease in the subsequent period.18

The largest di¤erences between the series are observed when the constraint is almost19

binding. An example is given in Figure 6 that plots the series when the largest di¤erence20

between the consumption values of KS-num and Xpa are observed.23 Around the trough,21

the series follow each other quite closely. In period 6734, the period before the unemploy-22

ment spell starts, consumption values are 2.45 and 2.47 according to KS-num and Xpa,23

respectively. But according to KS-num it drops to 1.40 whereas according to Xpa it drops24

to 1.57. The graph also shows that the other algorithms display a drop close to the value25

22When the di¤erences are considered across pairs of algorithms, then either KS-num or KS-sim is always

one of the two algorithms for which the largest di¤erences are observed.
23For consumption, the largest di¤erence across all possible pairs of algorithms is found between KS-num

and Xpa.
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predicted by Xpa.1

4.1.3 Comparing means of individual and aggregate series2

As documented in Table 12, the sample mean of the individual capital stock varies between3

10.29 and 10.98 (excluding Penal), whereas according to Table 9 the sample mean of the4

per capita capital stock varies much less. Moreover, the sample means of the individual5

capital stock are substantially below the sample means of the per capita values.24 If the6

sample is long enough, then the sample mean of the individual capital stock should get7

arbitrarily close to the sample mean of the cross-sectional average. A sample length of8

10,000 observations, which is used here, is apparently not long enough for the law of large9

numbers to kick in. The explanation is the enormous persistence in the individual capital10

series. The �rst-order autocorrelation coe¢ cient varies between 0.997 for Penal to 0.99911

for most of the other algorithms. The enormous persistence implies that the sample mean12

is estimated with a large standard error. In fact, the near unit-root type behavior means13

that the sample mean is almost not well de�ned. The high persistence is without doubt14

important in explaining why the individual capital series can diverge so much from each15

other, as is documented in Figures 5 and 6, and why the same, although to a lesser extent16

is true for cross-sectional means, as is documented in Figure 4.17

The high persistence is a typical feature of many economic models. Driving processes18

are typically persistent and the desire to smooth consumption only adds to the persistence.19

In the presence of so much persistence, one should be extremely careful in using regression20

analysis based on moments from simulated data as part of a numerical solution; the21

outcomes of regression analysis depend on sample means and when the series are highly22

persistent, then it typically requires extremely long samples to estimate these precisely.23

24The unconditional mean can be easily calculated from the conditional means. Averaged across the

�rst �ve algorithms, the sample average of the cross-sectional mean is equal 39.35 and the sample mean of

the individual capital stock is equal to 30.4.
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4.1.4 Accuracy of the individual policy rule1

In this section, the accuracy of the individual policy rule is discussed. It is possible to2

check for accuracy using standard Euler-equation errors. These are di¢ cult to compare3

across methods, however, because the di¤erent algorithms use di¤erent speci�cations for4

the state space. Therefore, the dynamic Euler-equation test discussed in section 3.4 is5

used. The purpose here is to test only the accuracy of the individual policy rule. Thus,6

~kt+1 is based on the same values of the aggregate moments as those used to calculate kt+1,7

namely those from the simulated panel. In terms of making predictions for the aggregate8

variables (which are needed to calculate the conditional expectation), the choices made9

are identical to those the algorithm makes in solving for the individual policy rule.10

Table 14 reports the average and maximum percentage di¤erences between the alterna-11

tive series, generated by explicitly calculating the conditional expectation in each period,12

and the series directly calculated using the numerical solution for the individual capital13

choice. If the solution is accurate, then the di¤erences between the two series should be14

small. The relative performance of the di¤erent algorithms is similar to the one found for15

the case without aggregate uncertainty. For the case with aggregate uncertainty, however,16

the size of the errors attained by the algorithms that perform less well are larger. The17

exception is Penal and to some extent Param. The accuracy errors for Penal are enormous18

for the case without aggregate uncertainty, but in the mid range of the observed outcomes19

for the case with aggregate uncertainty. The aggregate capital level for the case without20

aggregate uncertainty was set at a level above the equilibrium level to make the constraint21

bind more often. In the version with aggregate uncertainty, the aggregate capital level is22

the equilibrium level and the constraint binds less often. This is likely to be the reason23

behind the improved overall performance of the Penal algorithm and possibly also behind24

the reduction in the maximum consumption error for Param. It is an interesting question25

why the error for KS-num increases by so much for the case with aggregate uncertainty,26

while this is not the case for BInduc and Xpa.25 As mentioned above, the fact that the27

25The accuracy errors for KS-sim are likely to pick up the deviating behavior of the individual capital

choice when the economy switches from one aggregate state to another. Maliar, Maliar, and Valli (2009)
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constraint is less binding can only make it easier to solve the individual model accurately.1

The higher errors for KS-num suggest that solving the individual policy rules accurately is2

more di¢ cult in the case with aggregate uncertainty, than in the case without, even if the3

law of motion for the aggregate capital stock is taken as given. But the results for BInduc4

and Xpa make clear that it is possible to have errors that are low for the version with and5

for the version without aggregate uncertainty. The larger number of nodes over a more6

relevant part of the state space is likely to be an important reason behind the ability of7

BInduc and Xpa to keep on performing well when aggregate uncertainty is introduced.8

4.2 Properties of the law of motion for aggregate variables9

All algorithms used here, except BInduc, solve for a numerical approximation of the law of10

motion for a set of moments of the joint distribution of capital holdings and employment11

status.26 Param solves for an approximation to the aggregate law of motion, but this is12

an unnecessary step; given the parameterized cross-sectional distribution, the individual13

policy function could have been solved for without an explicit parameterization of the14

aggregate law of motion.15

In this section, we investigate the properties of the generated aggregate laws of mo-16

tion.27 The �rst subsection discusses the di¤erences in the implied means and standard17

deviations for aggregate capital. The second subsection discusses the accuracy of the18

aggregate laws of motion.19

report that their original program contained a typo. After correcting the typo, the average (maximum)

errors are equal to 0.032% (0.093%) and 0.009% (0.436%) for capital and consumption, respectively.
26den Haan (1996) also does not solve for a separate law of motion for aggregate capital. This algorithm

updates the coe¢ cients of the individual policy rules using the data from the simulated panel, which

contains the required information about the endogenous aggregate state variables without relying on an

explicit parameterization of the aggregate law of motion.
27As explained in section 2.6 of Reiter (2009b), the closest analogue to simulating with an aggregate law

of motion is to simulate with the proxy distribution and the data of BInduc are based on this simulation.
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4.2.1 Means and standard deviations of Kt1

Table 15 reports the mean and standard deviation of Kt according to the aggregate law2

of motion. The table documents that the di¤erences across algorithms are similar to the3

di¤erences between the corresponding moments that are based on the simulated panel.4

If the aggregate law of motion is very accurate, then moments of the capital series gen-5

erated by the aggregate law of motion should be very close to the corresponding moments6

of the aggregate capital series from the simulated panel. Those corresponding moments7

are also reported in Table 15. For the mean, the di¤erences are relatively small. The8

largest di¤erences are equal to 0.175% and 0.171% for Param and Penal, respectively.9

The smallest di¤erence is 0.03% which is attained by Xpa. For the standard deviation,10

the di¤erences are substantially larger. The smallest di¤erence is attained by KS-num and11

it is equal to 0.385%. Although the smallest value, it is still a non-trivial di¤erence and12

indicates that not all properties of the aggregate law of motion are accurately measured.2813

Excluding Penal, the largest di¤erence is observed for Xpa. The standard deviation ac-14

cording to the aggregate law of motion is equal to 1.027 and according to the simulated15

panel it is equal to 0.997. This di¤erence is equal to almost 3%. Note that these moments16

are based on the exact same set of realizations and the di¤erences are, thus, not due to17

sampling variation.18

The di¤erences between the moments of Kt generated with and without the aggregate19

law of motion can be interpreted as an accuracy test of the aggregate law of motion,20

because for the true aggregate law of motion the two time series for aggregate capital21

would be identical. The next subsection discusses an accuracy test, that is based on this22

idea.23

28The values of the standard R2 test are in excess of 0:9999 for both KS-num and KS-sim. This

supports the view expressed in den Haan (2009) that the R2 gives a misleading idea about the accuracy

of the aggregate law of motion.

24



4.2.2 Accuracy of the aggregate policy rule1

Papers in the literature that use the KS algorithm typically evaluate the accuracy of the2

law of motion for endogenous aggregate variables using the R2 and the standard error of the3

regression. In den Haan (2009), I document, however, that these measures are completely4

inadequate accuracy tests. In particular, I consider simulated data for the aggregate5

capital stock that is generated by the KS-num algorithm. Taking these as the true data,6

I then consider several approximating laws of motion. The true standard deviation of7

aggregate capital is up to 14% (119%) higher than the value implied by approximating8

laws of motion with R2s as high as 0.9999 (0.99). Thus, even approximating laws of motion9

with high R2 values can be clearly inaccurate in that they generate, for example, quite10

di¤erent standard deviations.2911

Description of the accuracy test. den Haan (2009) discusses two alternative accuracy12

tests that are much more powerful. The �rst accuracy test is the maximum forecast error13

of 100-period ahead forecast errors observed in a long simulation. This measure was �rst14

mentioned in Krusell and Smith (1998), but it is now rarely used. The second accuracy15

test is the logical extension of the �rst and is the one considered in this paper. It calculates16

the maximum percentage error between the following two aggregate series. The �rst is17

the aggregate capital stock that comes out of the simulated panel; these observations18

are calculated using only the individual policy rules. The second is the series that is19

obtained when only the aggregate law of motion is used to generate a time series for the20

corresponding aggregate series. That is, if one uses a sample with T observations, then21

one considers all t-period ahead forecast errors for 1 � t � T , starting at period 1 and22

conditional on the realization of aggregate shocks. By considering such large forecast23

errors, one allows tiny errors to accumulate.24

29The R2 has several problems, but one of the most important ones is that� in evaluating the �t of the

aggregate law of motion� it uses as the explanatory variable the value of aggregate capital obtained from

the simulated panel. That is, each period the aggregate law of motion is corrected using what has to be

explained.
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Outcomes of the accuracy test. Table 16 reports the outcome of this test using a time1

series of 10,000 observations. For BInduc, KS-num, and KS-sim, I only report the results2

for the aggregate capital stocks. For the other algorithms, I also report the results for the3

aggregate capital stocks conditional on the employment status. The reason is that BInduc,4

KS-num, and KS-sim only generate a law of motion for aggregate capital.30 Finding an5

accurate solution for the law of motion of the average capital stock across all agents is6

obviously easier, than doing the same for the average capital stock of the unemployed, but7

should be comparable to obtaining the law of motion for the average capital stock of the8

employed. The best performance is by KS-num and KS-sim. In particular, the maximum9

error found by KS-sim (KS-num) for the aggregate capital stock is 0.16% (0.24%), whereas10

the values are 0.28%, 0.34%, 0.35%, and 1.06% for the average capital according to BInduc,11

Xpa, Param, and Penal, respectively.12

Figure 7 compares the data generated by the aggregate law of motion with the cor-13

responding time series from the simulated panel.31 The graph clearly documents the14

excellent �t for KS-num and KS-sim. The errors of Param and Xpa are small, but the15

aggregate law of motion generates data that are consistently above the simulated series in16

this part of the sample. The aggregate laws of motion of BInduc do well during a boom,17

but the aggregate law of motion for the average capital stock of the unemployed clearly18

does poorly during a downturn. For Penal the aggregate law of motion consistently lies19

below the one implied by the simulation, which makes sense given that this law of motion20

is simply the capital choice of a representative agent that does not face idiosyncratic risk21

and incomplete markets.22

30For BInduc the series are generated as described in footnote 27.
31The �gure plots the series in that part of the sample where BInduc obtains its largest errors (excluding

the initial period) for the average capital stocks conditional on employment status. BInduc does not

automatically generate a law of motion for the average capital stocks conditional on employment status,

but it is possible to do so. The errors for the conditional means are substantially larger than the errors

for the per capita capital stock. The proxy distribution in BInduc takes the role of the aggregate law

of motion in the other algorithms. The proxy distribution does not take care well of how capital is split

between employed and unemployed, but does predict aggregate capital well.
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5 Concluding comments1

The lessons learned from this comparison project have already been summarized in the2

introduction. In the remainder of this paper, I will discuss some open questions.3

The algorithms considered in this paper di¤er in terms of how they solve the individual4

problem and in how they solve the aggregate problem. Somewhat surprisingly, there are5

large di¤erences in the accuracy of the individual policy rules. These (di¤erences in)6

inaccuracies are without doubt part of the reason why there are such large di¤erences in7

several properties of the simulated data. But there are also di¤erences in the (accuracy of8

the) aggregate laws of motion. Therefore, it is unclear how much of the observed di¤erences9

are due to di¤erences in how the individual problem is solved and how much is due to10

di¤erences in how the aggregate law of motion is calculated. It would be a worthwhile11

exercise to investigate this in more detail.12

The second open question is how the di¤erent algorithms will compare when more13

complex models are solved. The advantage of the KS algorithm is that it is easy to14

program and there are now many papers in the literature that use it. The additional15

programming burden of some of the other algorithms may make it more di¢ cult to use16

them in more elaborate models. The recently developed Xpa algorithm, however, is even17

easier to program than the KS algorithm, because it avoids the simulation step. At least18

these two algorithms should be compared using more interesting models.19

There is no algorithm that uniformly does better in all accuracy tests. It would,20

therefore, be nice if an algorithm could be constructed that (i) does better than the21

algorithms considered here in each test considered and (ii) has substantially better results22

for the accuracy test of the aggregate law of motion.23
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A Simulating without cross-sectional sampling variation1

Information used. The beginning-of-period t distribution of capital holdings is fully2

characterized by the following:3

� the fraction of unemployed agents with a zero capital stock, pu;0t ;4

� the fraction of employed agents with a zero capital stock,32 pe;0t ;5

� the distribution of capital holdings of unemployed agents with positive capital hold-6

ings, and7

� the distribution of capital holdings of employed agents with positive capital holdings.8

Overview. The goal is to calculate the same information at the beginning of the next9

period. Besides these four pieces of information regarding the cross-sectional distribution10

one only needs (i) the realizations of the aggregate shock this period and next period and11

(ii) the individual policy function.12

Grid Construct the following grid and de�ne the beginning-of-period distribution of13

capital as follows.14

� �0 = 0 and �j = 0:1j, j = 1; � � � ; 1000.15

� Let p";0t be the fraction of agents with employment status " with a zero capital stock16

at the beginning of period t.17

� For j > 0, let p";jt be equal to the mass of agents with a capital stock bigger than18

�i�1 and less than or equal to �i. This mass is assumed to be distributed uniformly19

between grid points.20

� We have
1000X
j=0

pu;jt = 1;
1000X
j=0

pe;jt = 1:

32Employed agents never choose a zero capital stock, but some unemployed agents that chose a zero

capital stock last period are employed this period.
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Denote this beginning-of-period distribution function by P "t (k):1

End-of-period distribution The �rst step is to calculate the end-of-period distribution2

of capital.3

For the unemployed calculate the level of capital holdings at which the agent chooses4

�j . If we denote this capital level by x
u;j
t , then it is de�ned by

33
5

k0(xu;jt ; �) = �j : (1)

Now compute the end-of-period distribution function at the grid points as6

F u;jt =

Z xu;jt

0
dP ut (k) =

juX
j=0

pu;jt +
xu;jt � �ju
�1+ju � �ju

pu;ju+1t ; (2)

where ju = j(xu;jt ) is the largest value of j such that �j � xu;jt . The second equality7

follows from the assumption that P ut is distributed uniformly between grid points.8

A similar procedure is used to calculate the end-of-period distribution for the employed.

F e;jt =

Z xe;jt

0
dP et (k) =

jeX
j=0

pe;jt +
xe;jt � �je
�1+je � �je

pe;je+1t ;

where ij = i(xe;jt ) is the largest value of j such that �j � xe;jt .9

Next period�s beginning-of-period distribution Let g"t"t+1atat+1 stand for the mass10

of agents with employment status " that have employment status "t+1, conditional on the11

values of at and at+1. For each combination of values of at and at+1 we have12

gutut+1atat+1 + getut+1atat+1 + gutet+1atat+1 + getet+1atat+1 = 1: (3)

We then have13

P ";jt+1 =
gut"t+1

gut"t+1 + get"t+1
F u;jt +

get"t+1
gut"t+1 + get"t+1

F e;jt (4)

33This is a non-linear problem (and has to be calculated at many nodes), but it should be a well behaved

problem.
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and1

p";0t+1 = P ";0t+1 (5)

p";jt+1 = P ";jt+1 � P
";j�1
t+1 (6)

To implement this procedure and to ensure that di¤erences in the simulated output2

are only due to di¤erences in the policy functions used, we have to use the same interval3

length, which is set equal to 0.1. Since setting the upper bound can be an important part4

of the program, participants are free to choose their own upper bound.5

30



References1

Algan, Y., O. Allais, and W. J. den Haan (2009): �Solving the Incomplete Markets2

Model with Aggregate Uncertainty Using Parameterized Cross-Sectional Distributions,�3

Journal of Economic Dynamics and Control, this issue.4

Algan, Y., O. Allais, W. J. den Haan, and P. Rendahl (2008): �Solving and5

Simulating Models with Heterogeneous Agents,�unpublished manuscript, University of6

Amsterdam.7

Carroll, C. D. (2006): �The Method of Endogenous Gridpoints for Solving Dynamic8

Stochastic Optimization Problems,�Economic Letters, 91, 312�320.9

den Haan, W. J. (1996): �Heterogeneity, Aggregate Uncertainty and the Short-Term10

Interest Rate,�Journal of Business and Economic Statistics, 14, 399�411.11

(1997): �Solving Dynamics Models with Aggregate Shocks and Heterogeneous12

Agents,�Macroeconomic Dynamics, 1, 355�386.13

(2009): �Assessing the Accuracy of the Aggregate Law of Motion in Models with14

Heterogeneous Agents,�Journal of Economic Dynamics and Control, this issue.15

den Haan, W. J., and J. de Wind (2008): �Solving DSGE Models When Penalty Func-16

tions are Used Instead of Inequality Constraints,�unpublished manuscript, University17

of Amsterdam.18

den Haan, W. J., K. L. Judd, and M. Juillard (2009): �Computational Suite of19

Models with Heterogeneous Agents: Incomplete Markets and Aggregate Uncertainty,�20

Journal of Economic Dynamics and Control, this issue.21

den Haan, W. J., and A. Marcet (1994): �Accuracy in Simulations,� Review of22

Economic Studies, 61, 3�18.23

den Haan, W. J., and P. Rendahl (2009): �Solving the Incomplete Markets Model with24

Aggregate Uncertainty Using Explicit Aggregation,� Journal of Economic Dynamics25

and Control, this issue.26

31



Judd, K. L. (1998): Numerical Methods in Economics. The MIT Press, Cambridge,1

Massachusetts.2

Kim, S., R. Kollmann, and J. Kim (2009): �Solving the Incomplete Markets Model with3

Aggregate Uncertainty Using a Perturbation Method,�Journal of Economic Dynamics4

and Control, this issue.5

Krusell, P., and A. A. Smith, Jr. (1997): �Income and Wealth Heterogeneity, Port-6

folio Choice, and Equilibrium Asset Returns,�Macroeconomic Dynamics, 1, 387�422.7

(1998): �Income and Wealth Heterogeneity in the Macroeconomy,� Journal of8

Political Economy, 106, 867�896.9

Maliar, L., S. Maliar, and F. Valli (2009): �Solving the Incomplete Markets Model10

with Aggregate Uncertainty Using the Krusell-Smith Algorithm,�Journal of Economic11

Dynamics and Control, this issue.12

Preston, B., and M. Roca (2006): �Incomplete Markets, Heterogeneity and Macro-13

economic Dynamics,�unpublished manuscript, Columbia University.14

Reiter, M. (2001): �Estimating the Accuracy of Numerical Solutions to Dynamic Opti-15

mization Problems,�unpublished manuscript, Universitat Pompeu Fabra.16

(2009a): �Solving Heterogeneous-Agent Models by Projection and Perturbation,�17

Journal of Economic Dynamics and Control, forthcoming.18

(2009b): �Solving the Incomplete Markets Economy with Aggregate Uncertainty19

by Backward Induction,�Journal of Economic Dynamics and Control, this issue.20

Ríos-Rull, J. V. (1997): �Computation of Equilibria in Heterogeneous Agent Models,�21

Federal Reserve Bank of Minneapolis Sta¤ Report, 231, 238�264.22

Santos, M. (2000): �Accuracy of Numerical Solutions Using the Euler Equations Resid-23

ual,�Econometrica, 68, 1377�1402.24

32



Santos, M. S., and A. Peralta-Alva (2005): �Accuracy of Simulations for Stochastic1

Dynamic Models,�Econometrica, 73, 1939�1976.2

Young, E. R. (2009): �Solving the Incomplete Markets Model with Aggregate Uncer-3

tainty Using the Krussell-Smith Algorithm and Non-Stochastic Simulations,� Journal4

of Economic Dynamics and Control, this issue.5

33



Figure 1: Policy rule (no aggregate uncertainty)
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Notes: Panels A and B plot the policy rule for capital at low values of capital. Panels
C and D plot the policy choices relative to the policy choice according to BInduc. In
the simulation, the mean capital stock is 12.5; the maximum is equal to 43 (the initial
condition); the maximum when the initial transition from the high initial value is excluded
is equal to 18.7.
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Figure 2: Simulated individual variables (no aggregate uncertainty)
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Notes: This graph plots the initial part of simulated series generated by the six algorithms.
Note that the initial value chosen is extreme (at least according to all algorithms except
Penal) and such a high value of k is not again observed in the later part of the simulation.
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Figure 3: Individual consumption - simulated using Param
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Notes: This graph plots the initial part of the simulated observations for individual con-
sumption using Param and the corresponding value according to the dynamic Euler equa-
tion test.
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Figure 4: Simulated mean capital stock of the employed
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Notes: This graph plots the simulated cross-sectional mean capital stock of the employed
in that part of the sample where the di¤erences between the algorithms take on the largest
values.
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Figure 5: Simulated individual series I
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Notes: This graph plots the indicated series in a part of the sample where substantial (but
not the largest) di¤erences between the di¤erent algorithms are observed. The scale of the
lower panel is meaningless; a higher value for the aggregate state simply indicates that
aggregate productivity takes on the higher value and a higher value for the employment
status indicates that the agent is employed.
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Figure 6: Simulated individual series II
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Notes: This graph plots the indicated series in that part of the sample where the largest
di¤erences between the di¤erent algorithms are observed. The scale of the lower panel
is meaningless; a higher value for the aggregate state simply indicates that aggregate
productivity takes on the higher value and a higher value for the employment status
indicates that the agent is employed.
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Figure 7: Accuracy aggregate law of motion
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Notes: This graph plots the indicated mean capital stock according to the aggregate law of
motion (line with open circles) and the value that is obtained if the individual policy rules
are used to simulate a cross-sectional distribution (solid line). Note that the �gures for
KS-num and KS-sim do plot the two lines, but that they are basically indistinguishable.

41



Table 1: Algorithms and participants

Abbreviation Participants
BInduc Michael Reiter
KS-num Eric Young
KS-sim Lilia Maliar, Serguei Maliar, Fernando Valli
Param Olivier Allais, Yann Algan, Wouter den Haan
Xpa Wouter den Haan, Pontus Rendahl
Penal Sunghyun Kim, Robert Kollmann, Jinill Kim
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Table 2: Computation times

Algorithm Programming language Time
BInduc Matlab 47 minutes
KS-num Fortran 324 minutes
KS-sim Matlab 310 minutes
Param Fortran 2739 minutes
Xpa Matlab 7 minutes
Penal Matlab < 1 second!
Notes: This table reports the time it takes to solve the model when  = 1:1, starting at
the solution for  = 1.
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Table 3: Computational intensity in solving individual problem

Algorithm # Nodes Functional form Range Location
BInduc 500 spline [0,392.9] extra nodes around constraint
KS-num 150 spline [0,1200] extra nodes around constraint
KS-sim 100 spline [0,1000] extra nodes around constraint
Param 50 27th-order [0,99] Chebyshev nodes

Chebyshev Pol.
Xpa 250 spline [0,200] extra nodes around constraint
Notes: The range given is not exactly comparable across methods, because BInduc and
Xpa use the endogenous grid points procedure of Carroll (2006) in which case the range
is for kt+1, whereas for the other procedures the range is for kt.
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Table 4: Value of k at which constraint binds
BInduc KS-num KS-sim Param Xpa Penal

k0 = 0 for k equal to 0.177 0.184 0.145 0.176 0.177 0.162
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Table 5: Properties policy function - no aggregate uncertainty

BInduc KS-num KS-sim Param Xpa Penal
Mean cit 2.632 2.632 2.632 2.632 2.632 2.705
Mean kit 12.48 12.49 12.48 12.47 12.50 27.34
St. dev. cit 0.193 0.193 0.193 0.193 0.192 0.143
St. dev. kit 3.738 3.737 3.738 3.731 3.742 7.229
Correlation cit & kit 0.824 0.824 0.824 0.825 0.825 0.961

Notes: These properties are based on the outcomes of a simulation of 10,000 observations
using identical realizations for the exogenous driving.
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Table 6: Euler equation errors - no aggregate uncertainty

BInduc KS-num KS-sim Param Xpa Penal

Average errors
Unemployed 2.2E-04% 1.7E-04% 2.1E-03% 6.2E-02% 1.4E-05% 1.4E-02%
Employed 4.6E-05% 4.0E-05% 1.7E-04% 6.4E-04% 1.1E-05% 1.4E-03%

Maximum errors
Unemployed 3.1E-02% 3.0E-02% 6.8E-01% 1.6% 4.0E-03% 9.2E-01%
attained at k = 0.57 0.19 0.20 0.56 99.8 1.63
Employed 2.6E-04% 9.3E-04% 1.3E-03% 1.6E-03% 2.9E-05% 2.1E-02%
attained at k = 0.81 3.58 6.82 0 0.57 0

Notes: Errors are calculated on a grid for k where k varies from 0 to 100 and the step
size is equal to 0.01.
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Table 7: Percentage errors from dynamic Euler accuracy test - no aggregate uncertainty

BInduc KS-num KS-sim Param Xpa Penal

Capital (scaled error)
Average error 0.0000% 0.005% 0.001% 0.015% 0.004% 11.2%
Maximum error 0.0004% 0.118% 0.011% 1.607% 0.015% 20.1%

Consumption (% error)
Average error 0.0001% 0.010% 0.001% 0.019% 0.0004% 2.39%
Maximum error 0.0024% 3.830% 0.154% 47.96% 0.2066% 499%
Notes: The error from this test is the di¤erence between the values of the capital and
consumption paths generated with the individual policy functions and the values of the
paths that are obtained when each period the values of capital and consumption that are
implied by the explicitly calculated conditional expectation are used. Since capital values
can be close to zero, the error for capital is calculated as the absolute di¤erence divided
by the mean capital stock.
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Table 8: DenHaan-Marcet statistic - no aggregate uncertainty

BInduc KS-num KS-sim Param Xpa Penal
Average statistic 1.76 1.75 1.75 1.75 1.77 47.4
Times failed (out of 20) 1 1 1 1 1 20
Notes: Each test is based on a sample of 500 observations. The null that the sample
average of the error term is equal to zero is rejected at the 5% level, if the statistic is
above 3.84. For Penal, I test the accuracy of the approximation as a solution to the
original model, i.e., with the inequality constraint and without the penalty function.
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Table 9: Means and standard deviations of cross-sectional moments

BInduc KS-num KS-sim Param Xpa Penal

Means
1st-order moment of the unemployed 37.67 37.74 37.70 37.67 37.69 37.56
2nd-order moment of the unemployed 1.13 1.15 1.12 1.12 1.13 1.02
3nd-order moment of the unemployed 1.27 1.29 1.23 1.24 1.25 1.04
4th-order moment of the unemployed 1.41 1.44 1.33 1.34 1.37 1.05
5th-order moment of the unemployed 1.54 1.59 1.42 1.42 1.48 1.07

1st-order moment of the employed 39.45 39.49 39.50 39.45 39.47 39.33
2nd-order moment of the employed 1.12 1.13 1.11 1.11 1.11 1.02
3nd-order moment of the employed 1.25 1.27 1.21 1.21 1.23 1.03
4th-order moment of the employed 1.38 1.40 1.30 1.31 1.34 1.05
5th-order moment of the employed 1.50 1.54 1.39 1.39 1.44 1.06

Standard deviations
1st-order moment of the unemployed 1.4324 1.4356 1.4031 1.4334 1.4303 1.4708
2nd-order moment of the unemployed 0.0167 0.0128 0.0193 0.0068 0.00145 0.0130
3nd-order moment of the unemployed 0.0345 0.0227 0.0411 0.0122 0.0283 0.0234
4th-order moment of the unemployed 0.0543 0.0307 0.0663 0.0168 0.0425 0.0320
5th-order moment of the unemployed 0.0760 0.0369 0.0944 0.0207 0.0570 0.0391

1st-order moment of the employed 0.964 0.9683 0.9532 0.9383 0.9608 0.9961
2nd-order moment of the employed 0.0135 0.0096 0.0159 0.0055 0.0114 0.0098
3nd-order moment of the employed 0.0292 0.0176 0.0354 0.0100 0.0233 0.0182
4th-order moment of the employed 0.0473 0.0242 0.0587 0.0138 0.0360 0.0254
5th-order moment of the employed 0.0675 0.0294 0.0851 0.0172 0.0493 0.0313
Notes: These statistics are based on the outcomes of a simulation of 10,000 observations
using identical realizations for the exogenous random shocks. The procedure to simulate
a continuum of agents is discussed in the appendix. For n > 0, the nth-order moment,
M(n), is expressed as M(n)1=n=M(1).
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Table 10: Di¤erences between simulated cross-sectional mean capital stocks

BInduc KS-num KS-sim Param Xpa

Average di¤erences - mean capital stock of unemployed
BInduc 0
KS-num 0.176% 0
KS-sim 0.116% 0.178% 0
Param 0.018% 0.179% 0.106% 0
Xpa 0.018% 0.124% 0.103% 0.058% 0
Average across algorithms 0.091% 0.164% 0.128% 0.090% 0.085%

Average di¤erences - mean capital stock of employed
BInduc 0
KS-num 0.098% 0
KS-sim 0.146% 0.108% 0
Param 0.017% 0.101% 0.142% 0
Xpa 0.056% 0.047% 0.113% 0.058% 0
Average across algorithms 0.079% 0.088% 0.127% 0.079% 0.068%

Maximum di¤erences - mean capital stock of unemployed
BInduc 0
KS-num 0.403% 0
KS-sim 0.436% 0.816% 0
Param 0.093% 0.490% 0.383% 0
Xpa 0.107% 0.336% 0.522% 0.169% 0
Average across algorithms 0.260% 0.511% 0.593% 0.284% 0.283%

Maximum di¤erences - mean capital stock of employed
BInduc 0
KS-num 0.235% 0
KS-sim 0.299% 0.505% 0
Param 0.081% 0.310% 0.247% 0
Xpa 0.102% 0.154% 0.380% 0.159% 0
Average across algorithms 0.179% 0.301% 0.358% 0.199% 0.199%
Notes: Using the simulated cross-sectional mean capital stocks, this table reports the
average and maximum di¤erences between the algorithms. Di¤erences are calculated
using log di¤erences to ensure symmetry.
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Table 11: Means of the 5th and 10th percentile

BInduc KS-num KS-sim Param Xpa Penal

Unemployed
5% 11.91 11.28 12.28 11.80 12.07 23.86
5%, boom 12.77 12.15 13.16 12.65 12.93 25.32
5%, recession 11.10 10.45 11.44 10.99 11.26 22.47
10% 15.68 15.04 16.12 15.60 15.89 27.38
10%, boom 16.49 15.83 16.95 16.41 16.70 28.76
10%, recession 14.91 14.28 15.32 14.83 15.12 26.08

Employed
5% 14.05 13.43 14.44 13.92 14.20 26.24
5%, boom 14.26 13.63 14.66 14.13 14.41 26.74
5%, recession 13.85 13.24 14.23 13.12 14.00 25.77
10% 17.68 17.05 18.14 17.58 17.89 29.66
10%, boom 17.88 17.24 18.35 17.78 18.08 30.10
10%, recession 17.49 16.86 17.95 17.40 17.70 29.24
Notes: These properties are based on the outcomes of a simulation of 10,000 observations
using identical realizations for the exogenous random shocks.
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Table 12: Properties of individual policy rules

BInduc KS-num KS-sim Param Xpa Penal

Correlations
cit & Ct 0.269 0.269 0.233 0.263 0.267 0.297
cit & Yt 0.196 0.194 0.127 0.191 0.195 0.210
cit & Kt 0.264 0.263 0.238 0.257 0.262 0.291
cit & kit 0.921 0.914 0.919 0.926 0.923 0.967

Autocorrelations
cit & cit�1 0.985 0.982 0.980 0.986 0.986 0.992
cit & cit�2 0.971 0.966 0.963 0.971 0.972 0.984
cit & cit�3 0.957 0.948 0.948 0.957 0.958 0.974
kit & kit�1 0.999 0.998 0.999 0.999 0.999 0.997
kit & kit�2 0.996 0.995 0.996 0.996 0.996 0.991
kit & kit�3 0.992 0.991 0.992 0.992 0.992 0.984
�cit & �c

i
t�1 -0.084 -0.084 -0.094 -0.081 -0.0793 0.090

Means
cit 2.75 2.73 2.77 2.75 2.75 2.82
kit 31.14 28.80 31.03 30.37 30.69 38.22

Standard deviations
cit 0.151 0.150 0.155 0.152 0.151 0.151
kit 10.73 10.29 10.98 10.95 10.86 7.65
Notes: These properties are based on the outcomes of a simulation of 10,000 observations
using identical realizations for the exogenous random shocks.
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Table 13: Di¤erences between simulated consumption series

BInduc KS-num KS-sim Param Xpa

Average di¤erences - capital (scaled di¤erence)
BInduc 0
KS-num 4.54% 0
KS-sim 2.90% 7.44% 0
Param 1.27% 5.34% 2.33% 0
Xpa 1.81% 6.35% 1.10% 1.41% 0
Average across algorithms 2.10% 4.73% 2.75% 2.07% 2.13%

Maximum di¤erences - capital (scaled di¤erence)
BInduc 0
KS-num 13.1% 0
KS-sim 5.52% 17.5% 0
Param 5.96% 18.8% 3.82% 0
Xpa 3.82% 16.5% 2.89% 2.42% 0
Average across algorithms 5.68% 13.2% 5.94% 6.20% 5.12%

Average di¤erences - consumption (% di¤erence)
BInduc 0
KS-num 0.49% 0
KS-sim 1.15% 1.63% 0
Param 0.15% 0.58% 1.08% 0
Xpa 0.20% 0.69% 0.97% 0.17% 0
Average across algorithms 0.40% 0.68% 0.97% 0.39% 0.41%

Maximum di¤erences - consumption (% di¤erence)
BInduc 0
KS-num 7.74% 0
KS-sim 9.81% 9.51% 0
Param 1.79% 8.96% 9.03% 0
Xpa 3.66% 11.4% 10.8% 3.37% 0
Average across algorithms 4.60% 7.52% 7.83% 4.63% 5.84%
Notes: Using the simulated consumption series, this table reports the average and
maximum di¤erences between the algorithms; di¤erences are calculated using log
di¤erences to ensure symmetry. Since capital values can be close to and equal to zero,
the table reports for capital the absolute di¤erence scaled by a weighted average of the
means of the two series.
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Table 14: Percentage errors from dynamic Euler accuracy test

BInduc KS-num KS-sim Param Xpa Penal

Capital (scaled error)
Average error 0.005% 4.61% 33.2% 0.78% 0.050% 0.29%
Maximum error 0.016% 17.2% 68.8% 2.96% 0.103% 1.52%

Consumption (% error)
Average error 0.006% 0.54% 5.52% 0.11% 0.006% 0.12%
Maximum error 0.004% 24.6% 67.5% 22.3% 0.099% 1.10%
Notes: The error from this test is the di¤erence between the values of the capital and
consumption paths generated with the individual policy functions and the values of the
paths that are obtained when each period the values of capital and consumption that are
implied by the explicitly calculated conditional expectation are used. Since capital values
can be close to zero, the error for capital is calculated as the absolute di¤erence divided
by the mean capital stock.
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Table 15: Moments of Kt in panel and according to aggregate law of motion

BInduc KS-num KS-sim Param Xpa Penal

Sample means of Kt

In panel 39.307 39.348 39.357 39.306 39.329 39.187
According to aggregate law of motion 39.338 39.351 39.346 39.375 39.340 39.254
% di¤erence 0.078% 0.088% 0.027% 0.175% 0.030% 0.171%

Standard deviations of Kt

In panel 1.001 0.989 1.033 1.005 0.997 0.976
According to aggregate law of motion 1.018 0.992 1.024 1.011 1.027 0.941
% di¤erence 1.700% 0.385% 0.798% 0.611% 2.953% 3.575%
Notes: These statistics are based on the outcomes of a simulation of 10,000 observations
using identical realizations for the exogenous random shocks.
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Table 16: Accuracy aggregate policy rule

BInduc KS-num KS-sim Param Xpa Penal

Average di¤erences
Unemployed - - - 0.256% 0.117% 0.360%
Employed - - - 0.168% 0.104% 0.343%
Total 0.105% 0.072% 0.050% 0.175% 0.105% 0.345%

Maximum di¤erences
Unemployed - - - 0.497% 0.439% 1.131%
Employed - - - 0.341% 0.339% 1.056%
Total 0.280% 0.239% 0.156% 0.347% 0.343% 1.059%
Notes: This table reports the di¤erence between the mean capital stock according to the
aggregate law of motion and the value that is obtained if the individual policy rules are
used to simulate a cross-sectional distribution. BInduc, KS-num, and KS-sim only
calculate an aggregate law of motion for the total capital stock.
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