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(1992) and Newey and West (1994).  In finite samples, Monte Carlo simulation experiments indicate that the 
VARHAC estimator matches, and in some cases greatly exceeds, the performance of the prewhitened kernel 
estimator proposed  
by Andrews and Monahan (1992). These simulation experiments also illustrate several  important limitations  
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1.  INTRODUCTION 

 The recent literature on heteroscedasticity-and-autocorrelation-consistent (HAC) covariance matrices has 

mainly focused on kernel-based methods of estimating the spectral density matrix at frequency zero.1   Nevertheless, 

Parzen (1969) identified several advantages of autoregressive (AR) spectral density estimation, and these 

advantages have been highlighted in a variety of simulation experiments (e.g., Beamish and Priestley 1981; Kay and 

Marple 1981; Parzen 1983).  The consistency of the AR spectral estimator has been demonstrated for the case of 

weakly stationary data, under specific assumptions about the growth rate of the lag order h as a function of the 

sample  

length T  (cf. Berk 1974; An et al. 1982; Hannan and Kavalieris 1983).  However, the consistency of the AR 

spectral estimator has not been verified under more general mixing conditions or in the case of estimated residuals, 

and  

no results have been available regarding its convergence rate when the lag order is determined by a data-dependent 

model selection criterion. 

 This paper proposes a HAC covariance matrix estimator, referred to as the VARHAC estimator,  

in which the spectral density at frequency zero is constructed using vector autoregressive (VAR) spectral estimation,  

and Schwarz’ (1978) Bayesian Information Criterion (BIC) is used to select the lag structure of the VAR model.   

We establish the consistency and convergence rate of the VARHAC estimator under general conditions of 

heteroskedasticity and temporal dependence, similar to the conditions used to analyze kernel-based estimators  

(e.g., Andrews 1991).  In particular, the data generating process (dgp) need not be finite-order ARMA or even 

weakly stationary.  

 Under these conditions, we demonstrate that the VARHAC estimator efficiently captures the unconditional 

second moments of the data:  even in the absence of covariance stationarity, this estimator achieves a faster 

convergence rate than any estimator in the class of positive semi-definite (PSD) kernels.  The VAR spectral 

estimator can be expressed as an infinite sum of the autocovariances implied by the estimated VAR of order h;  

i.e., this estimator assigns weights of unity to all of the sample autocovariances up to order h, and ensures a PSD 

spectral density matrix by extrapolating higher-order autocovariances that vanish at an exponential rate.  Thus, as 

originally conjectured by Parzen (1969), the bias of the VAR spectral estimator is asymptotically of the same order 

as the bias of the simple truncated kernel estimator (which assigns weights of unity to all sample autocovariances  

up to the truncation point h), and declines at a faster rate than the bias of any PSD kernel-based estimator (which 

assigns weights less than unity to the sample autocovariances, based on the value of the bandwidth parameter h).  

Moreover, as in Parzen (1969) and Berk (1974), we show that the asymptotic variance of the VAR spectral 

estimator is O(h / T ), just as for kernel-based spectral estimators.  Finally, we extend the lag order selection results 

of   

                                                           
1  Eichenbaum et al. (1987) and West (1997) implemented covariance matrix estimators for the case of a vector moving-average  
(MA) process of known finite order.  Andrews (1991) and Andrews and Monahan (1992) briefly considered a first-order AR spectral estimator, 
but the estimator did not correct for heteroskedasticity and performed poorly in simulation experiments.  Stock and Watson (1993) utilized AR(2) 
and AR(3) covariance matrix estimators in simulation experiments and in an empirical application.  Finally, Lee and Phillips (1994) have 
analyzed the properties of an ARMA-prewhitened HAC estimator for the case of a finite-order ARMA process with i.i.d. innovations. 
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Shibata (1980, 1981), Hannan and Kavalieris (1986), and Hannan and Deistler (1988) to allow for conditional or 

unconditional heteroskedasticity, and we show that BIC yields a lag order growth rate that asymptotically 

approaches the optimal rate (i.e., the rate that minimizes the asymptotic mean-squared error of the VAR spectral 

estimator).   

In particular, by evaluating the goodness-of-fit relative to the degree of parsimony, BIC appropriately reflects the 

tradeoff between the asymptotic bias and asymptotic variance of the VAR spectral estimator. 

 We utilize Monte Carlo simulation experiments to evaluate the finite-sample performance of the VARHAC 

estimator in generating accurate confidence intervals for linear regression coefficients.  In replicating the simulation 

experiments performed by Andrews and Monahan (1992), we find that the VARHAC estimator generally matches 

the performance of the first-order prewhitened quadratic-spectral (QS-PW(1)) estimator proposed by Andrews and 

Monahan (1992) for a wide variety of dgps.  To highlight the finite-sample advantages of the VARHAC estimator, 

we also describe several simulation experiments in which the accuracy of this estimator greatly exceeds that of the 

QS-PW estimator.  In particular, the kernel-based estimator may yield very poor results when an arbitrarily 

specified time series process is used to determine the value of the bandwidth parameter, or when higher-order AR 

components are present in the data.  Furthermore, to ensure a PSD covariance matrix, a kernel-based estimator must 

use the same bandwidth parameter for every element of the residual vector.  As pointed out by Robinson (1996), 

this constraint can yield very low accuracy when the autocovariance structure varies substantially across elements.  

In contrast,  

the VARHAC estimator permits the lag order to vary across equations in the VAR (and across the variables in each 

equation), since the resulting covariance matrix is PSD by construction. 

 The remainder of this paper is organized as follows:  Section 2 provides a step-by-step description of the 

VARHAC covariance matrix estimation procedure.  Section 3 establishes the consistency and rate of convergence  

of the VARHAC procedure.  Section 4 compares the asymptotic and finite-sample properties of the VARHAC 

estimator with those of prewhitened kernel-based HAC covariance matrix estimators. 
 

2.  THE VARHAC PROCEDURE 

 In many estimation problems, a parameter estimate $ψ T  for a p×1 parameter vector ψ0 is obtained for  

a sample of length T using the sample analog of a set of moment conditions, such as E Vt(ψ0) = 0, where Vt(ψ0)  

is an N×1 vector of residual terms with N ≥ p.  This orthogonality condition is often used to motivate the following 

estimator of ψ0: 
 
(2.1)  $ψ T   = argminψ V′T  MT  VT, 
 

where VT = =∑ V Ttt
T ( ) /ψ1  is the vector of sample moments of Vt(ψ), and MT  is an N×N (possibly random) 

symmetric weighting matrix (cf. Hansen 1982).  Under certain regularity conditions, ( )T T
1 2

0
/ $ψ ψ−  has  

a limiting normal distribution with mean 0 and covariance matrix  Ω = 2π B′ f (0) B, where f (0) denotes the limiting 

spectral density at frequency zero of the process Vt(ψ0).  In particular, the N×N matrix f ST T( ) lim0 = →∞ / 2π ;  
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the N×p matrix B M D D M DT T T T T T= →∞
−lim ( )' 1 , and ST and DT are defined as follows: 
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The matrix DT  is typically estimated by its sample analog $DT   ≡ DT( $ψ T ), and $DT  - DT   → 0 in probability  

as T → ∞.  In this paper, we construct the spectral estimator $ST ( $ψ T ) using a VAR representation of Vt( $ψ T ),  

for which BIC is used to select the lag order for each equation in the VAR.  The covariance matrix estimator  

based on $ST ( $ψ T ) will be referred to as the VARHAC estimator.   
 

Step 1.  Lag order selection for each VAR equation.  For the nth  element $Vnt  of the vector Vt( $ψ T ) (n = 1,...,N) 

and for each lag order h = 1,..., H , the following model is estimated by ordinary least squares (OLS): 

 
(2.5)  V h V e h t H Tnt j

N
njk j t k ntk

h= + = += −=∑ ∑1 1 1$ ( ) $ ( ) , ,,α for L . 

 

For lag order 0, we set $ ( )e Vnt nt0 ≡ . Below we will discuss the maximum lag order, H , that one wants to consider. 

Then the value of the BIC criterion is calculated for each lag order h = 0,..., H . 
 

(2.6)   BIC log det( ; )
$ ( )$ ( )' log( )

h n
e h e h

T
h N T

T
nt ntt H
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For each element of Vt( $ψ T ) the optimal lag order hn is chosen as the value of h that minimizes BIC(h; n). 

 To minimize the computational requirements of the Monte Carlo simulation experiments, we only consider 

specifications in which all elements of Vt enter with the same number of lags in the regression equation for $Vnt  ,  

so that the model selection procedure involves estimating a total of N H( )+1  equations.  Allowing a different lag 

order for each variable in each equation would require a total of  N ( )H N+1 equations to be estimated, which is  

only computationally feasible if N and H are fairly small.  On the other hand, one could further restrict the set of 

admissible VAR models by using a system criterion to select the same lag order for all elements of Vt  .  Section 3 

demonstrates that the VARHAC estimator achieves a faster convergence rate than kernel-based estimators, even 

when a system criterion is used to determine the lag order.  However, the experiments reported in Section 4.2 

indicate that allowing the lag order to differ across equations can yield substantial benefits in finite samples. 
 

Step 2. Estimation of innovation covariance matrix.  Using the results of step 1, the restricted VAR can be 

expressed as: 

(2.7)   $ ( $ ) $A V ekk
H

t k T t= −∑ =0 ψ , 
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where $et  is an N×1 vector with typical element $ ( )e hnt n .  The (n,j) element of $Ak  is equal to zero if  k  >  hn ,  

and is equal to − $ ( )α njk nh if  0  <  k  ≤  hn.  $A0  is the identity matrix.  The innovation covariance matrix $ΣT  is 

estimated as follows: 

(2.8)   $
$ $'

ΣT
t tt H

T e e
T H

=
−

= +∑ 1 . 

 
 Alternatively, seemingly unrelated regression (SUR) methods could be used to obtain joint estimates  

of the restricted VAR parameters and the innovation covariance matrix, which would yield more efficient parameter 

estimates if the innovation covariance matrix contains significant off-diagonal elements. 

 

Step 3: Estimation of HAC covariance matrix.  Using the results of step 1 and 2, the VAR spectral estimator is 

constructed as follows: 
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Finally, the VARHAC covariance matrix estimator is defined by: 
 

(2.10)        [ ] [ ]$ ( $ ) $ $ $ $ ( $ ) $ $ $' ' 'V D M D D M S M D D M DT T T T T T T T T T T T T Tψ ψ=
− −1 1

. 

 

 

3.  ASYMPTOTIC PROPERTIES 

 In this section, we establish the consistency and convergence rate of the VAR spectral estimator  

under general conditions of heteroskedasticity and temporal dependence.  (All proofs are given in the appendix.)   

Section 3.1 establishes the conditions under which the true autocovariance structure of the data can be represented  

by an infinite-order VAR.  Section 3.2 evaluates the convergence rate of the VAR estimator of the spectral density  

of observed data.  Finally, Section 3.3 extends these results to the VARHAC procedure, which is applied to 

estimated regression residuals. 

 

3.1 VAR(∞) Representation of Autocovariance Structure. 

 Before analyzing the properties of AR approximation, it is important to establish the conditions under 

which the true autocovariance structure of a stochastic process can be represented by an infinite-order VAR.  

Consider a mean-zero sequence { }Vt t =−∞
∞  of random N-vectors.  For a given sample of length T, we define the 

average jth-order autocovariance matrix ( )ΓT j  as follows for | j | < T:   
 

(3.1)   
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 We shall utilize the notation  | x | =  supj | xj | to represent the supremum norm of a vector x.  For an L×M 

matrix X, we utilize the matrix norm | X  | = supi=1,...,L | |Xijj
M
=∑ 1   (cf. Hannan and Deistler 1988, p.266).  Then the 

following condition is sufficient to ensure that {Vt } meets Grenander’s (1954) conditions for asymptotic stationarity 

(cf. Parzen 1961; Hannan 1970, p.77). 

Condition A: { }Vt t =−∞
∞  is a mean-zero sequence of random N-vectors, satisfying: 

(1) ( )sup Et t t jj V V≥ +=
∞∑ < ∞10 '  

(2) ( ) ( )∃ =→∞limT T j jΓ Γ     for all j  ∈  (-∞, +∞) 

(3) ( ) ( )Γ Γj jT=   +  Op(T -1/2 )   for all j  ∈  (-∞, +∞) 

(4) ( )Γ 0  is positive definite 
 

 Condition A(1) is a standard assumption in the analysis of kernel-based spectral estimators (e.g., Andrews 

1991); under this assumption, ΓT ( j)  =  O(1) for all j ∈  (-∞, +∞).  For each value of  j, Conditions A(2) and A(3) 

rule out certain patterns of extreme temporal dependence in the sequence E(Vt V’t+j ).2   Condition A(4) excludes 

dgps in which the components of Vt are asymptotically collinear.  Under the assumptions of Condition A, the 

spectral density function,  f(ω), can be defined as follows: 

(3.3)  [ ]f j i jj( ) ( ) ( ) ,ω
π

ω ω π π= ∈ −=−∞
∞∑1

2
Γ exp    for  . 

 If  f (ω) is positive definite almost everywhere in [0, π] , then the autocovariance sequence { ( ) }Γ j j=−∞
∞  

and the spectral density function f (ω) are identical to those of a vector MA(∞) process with i.i.d. Gaussian 

innovations, where the MA coefficients are square-summable (cf. Theorem IV.6.2 of Doob 1953, p. 160-161; 

Hannan 1970, pp.160-163; Priestley 1982, pp.730-733).  In this paper, however, we focus primarily on the use of 

autoregressive approximation, in which case an additional assumption is required:    
 

Condition B:  The spectral density function f(ω) is positive definite over [0,π]. 
 
 This assumption ensures that the vector MA(∞) representation can be inverted into a VAR(∞) 

representation of the autocovariance sequence { ( ) }Γ j j=−∞
∞ . To formulate the VAR(∞) representation, it is useful  

to define the sequence GTM  of Toeplitz matrices, where the average autocovariance matrix ΓT j i( )− comprises the 

(i,j)th N×N block of GTM , for i, j=1,..., M.  The corresponding MN×MN matrices GM, and the infinite-dimensional 

Hankel matrix G∞, are each composed of the limiting autocovariance matrices.  Thus, Γ( )j i− comprises the (i , j)th 

block of GM  for i, j=1,..., M; and the (i,j)th block of G∞  for i, j=1,2,....  In addition, let −Γ ( )j comprise the j-th N×N 

block of the MN×N matrix gM  for  j=1,...,M; and the j-th N×N block of the matrix g∞  for j=1,2,....  It should be 

noted that Condition B places an important restriction on the Toeplitz matrices GM  and G∞.  For univariate 

processes, the smallest eigenvalue of G∞ is equal to the smallest value of f (ω) for ω in [-π,π], and the smallest 

                                                           
2 For example, Conditions A(2) and A(3) will hold if  the moments E(Vt V’t+j) are themselves drawn from a random distribution with mean Γ(j) 
and finite variance for each t and j, under mixing conditions sufficient to ensure that ΓT(j) follows a central limit theorem.  
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eigenvalue of GM declines monotonically and converges to the smallest eigenvalue of G∞ as M → ∞ (cf. Grenander 

and Szegö 1958, pp.147-54; Hannan 1970, pp.148-50; Fuller 1996, p. 154).  Thus, condition B is equivalent to the 

restriction that det(GM) ≠ 0 for all M ≥ 1 and that det(G∞) ≠ 0, thereby ruling out cases in which some linear 

combination of { }Vt t = −∞
+∞  has zero variance. 

 Under Conditions A and B, the following lemma indicates that the autocovariance sequence { ( ) }Γ j j=−∞
∞  

has a VAR(∞) representation with absolutely summable coefficients.  Furthermore, the VAR coefficients vanish  

at the same rate as the autocovariances, so that we can expect the rate of  convergence of the VAR spectral estimator 

to be similar to that of the truncated kernel estimator.    

 

Lemma 1:  Under Conditions A and B, the limiting autocovariances  Γ ( )j and spectral density function  f (ω)  

are identical to those of a vector VAR(∞) process with i.i.d. Gaussian innovations:   

                        f (ω)   =   (1/2π) {A[exp(iω)]}-1 Σ {A*[exp(iω)]}-1 

 where Σ  is a real symmetric positive-definite matrix;  A(z) =  A zj
j

j=

∞∑ 0
; A*(z) is the complex conjugate of A(z);  

A0 = IN ;  | |A jj ∞=
∞∑ < + ∞0 ; and det(A(z)) ≠ 0 for |z| ≤  1.  Furthermore, A∞  =  G∞

−1
 g∞  and  Σ = Σ∞ = Γ ( )0 - g′∞ A∞ 

.  Finally, if  j jj
λ | |Γ=

∞∑ 0  <  ∞  for  λ  ≥ 0, then j A jj
λ | |=

∞∑ 0 <  ∞. 
 

 Even in the absence of Condition B, VAR approximation yields a consistent estimate of the spectral 

density at all frequencies as the lag order M increases to infinity (Fuller 1996, p. 165).  Nevertheless, the 

convergence rate will generally be much slower than in cases where Condition B is satisfied (Grenander and Szegö 

1958, p. 190).3 

 

3.2. Convergence Rate of the VAR Spectral Estimator 

 For a sample of length T, we will consider VAR(h) approximations for 0 ≤ h ≤ H(T), where H(T) indicates 

the maximum admissible lag order.  Then the VAR(h) estimator of the spectral density at frequency zero can be 

expressed in terms of the sample autocovariances , defined as follows:  ~ ( ) ( / ) '( )ΓT t t jt H T
Tj T V V= −= +∑1 1   

for j ≥ 0, and ~ ( ) ~' ( )Γ ΓT Tj j= −  for  j < 0.  Now let ~ ( )ΓT j i−  comprise the (i, j)th N×N block of the hN×hN  

Toeplitz matrix ~GTh ; let − ~ ( )ΓT i  comprise the i-th N × N block of the hN×N matrix ~gTh ; and let the coefficient 

matrix ( )~'A jT h  comprise the j-th N×N block of the hN×N matrix ~AT h .  Then ~ATh  is determined by the OLS 

orthogonality conditions: ~ ( ~ ) ~A G gT h T h T h= −1 .  The estimated innovation covariance matrix can be expressed as 

( )~ ~ ( ) ~'Σ ΓT h T T hj
h j A j= =∑ 0 , where ( )~AT h 0  is the N×N identity matrix IN .  Finally,  f (0) is estimated by ~ST h

ar  / 2π, 

where ( ) ( )~ ~ ~ ~'[ ] [ ]S A j A jT h
ar

T hj T h T hj= =
∞ − −

=
∞∑ ∑0

1 1
0Σ .  We can simplify this notation to some extent  

by defining the h×1 vector qh
  with all elements equal to unity, and setting the hN×N matrix Qh = qh  ⊗  IN, where  

⊗  represents the Kronecker product.  Then ~ ( ' ~ ) ~ ( ~' )S I Q A I A QT h
ar

N h T h T h N T h h= + +− −1 1Σ . 

                                                           
3 Violation of Condition B implies that the vector MA(∞)  representation given in Lemma 2 cannot be inverted into a VAR(∞) representation with 
absolutely summable coefficients, due to the singularity of the Toeplitz matrices GM  (for sufficiently large values of M) and of the infinite-
dimensional Hankel matrix G∞.  However, the data can still be regressed on its own M lagged values using the generalized inverse of GM   (cf. 
Whittle 1983, pp.43-44). 
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 To analyze the convergence rate of the VAR spectral estimator, it is useful to define VAR(h) coefficients 

and innovation covariance matrix that are constructed using the autocovariance sequence { ( ) }Γ j j=−∞
∞ .  Since 

Condition B ensures that the smallest eigenvalue of the Toeplitz matrix Gh  is bounded away from zero, we can 

define A G gh h h= −1 , and ( )Σ Γh hj
h j A j= =∑ ( ) '0 , where ( )A jh'  comprises the j-th N×N block of Ah.  Then the 

spectral density at frequency zero implied by the VAR(h) approximation is given by Sh
ar / 2π , where 

S I Q A I A Qh
ar

N h h h N h h= + +− −( ' ) ( ' )1 1Σ .  Finally, using the results of Lemma 1, the spectral density  

at frequency zero may be expressed as ( )f I Q A I A QN N( ) ( ' ) ( )0 2 1 1 1= + + ′−
∞ ∞

−
∞ ∞ ∞

−π Σ . 

 Now the convergence rate of ~STh
ar  can be analysed using the following expression: 

 

(3.2)   | ~ ( )| | ( )| | ~ |S f S f S STh
ar

h
ar

Th
ar

h
ar− ≤ − + −2 0 2 0π π  

The first term on the right-hand side of equation (3.2) will be referred to as the asymptotic bias, and only depends 

on the autocovariance sequence { ( ) }Γ j j=−∞
∞ .  Since the second term measures the sampling variation in estimating 

the VAR(h) model, we will refer to E S STh
ar

h
ar| ~ |− 2  as the asymptotic variance.  However, to avoid further 

notational complexity, this term also incorporates two asymptotically negligible sources of bias:  (1) bias resulting 

from using the degrees of freedom correction factor 1/T instead of  1/(T - H(T)) in constructing the sample 

autocovariances; and (2) bias resulting from the difference between ΓT j( ) and Γ( )j .  The first source of bias is 

asymptotically negligible when the VAR lag order h  =  o(T 1/2), and the second source of bias is asymptotically 

negligible under Condition A. 

 By defining the asymptotic bias in terms of the autocovariance sequence { ( ) }Γ j j=−∞
∞  (which corresponds 

to that of an AR(∞) process with i.i.d. Gaussian innovations), it is straightforward to evaluate this bias using earlier 

results in the literature on AR approximation and AR spectral estimation (cf. Baxter 1962; Berk 1974; Hannan and 

Deistler 1988).  To facilitate this analysis, we explicitly consider three specific cases using the following condition: 
 

Condition C:   The autocovariances { ( ) }Γ j j=−∞
∞  and spectral density f (ω)  satisfy one of the following: 

(i) VAR(p) Representation:   f (ω)  =  (1/2π) {A[exp(iω)]}-1 Σ {A*[exp(iω)]}-1,  

where A(z) =  A zj
j

j
p
=∑ 0 for some 0  ≤  p  <  ∞. 

(ii)  VARMA(p,q) Representation:  f (ω)  =  (1/2π) {A[exp(iω)]}-1 B[exp(iω)]  Σ  B*[exp(iω)] 

{A*[exp(iω)]}-1, where A(z) = A zj
j

j
p
=∑ 0 for some 0  ≤  p < ∞,  B(z) = B zj

j
j
m
=∑ 0  

for some 0 <  m  < ∞; the leading coefficient matrices Ap and Bm are not identically  

equal to zero; and ρ0 is defined as the modulus of a zero of B(z) nearest  | z | = 1. 

(iii) Other VAR(∞) Representation:  The index  r  satisfies 0  <  r  <  ∞, where  

r  = sup r
r

jr j j{ }: ( )Γ=
∞∑ < ∞1 . 

 
 
Lemma 2:   Assume that the sequence {Vt } satisfies Conditions A-C. 

 (a)  Under Condition C(i), | ( )|S fh
ar − 2 0π   =  0  for  h  ≥  p. 

 (b)  Under Condition C(ii), | ( )|S fh
ar − 2 0π    =  O[ ρ0 

-h ]. 
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 (c) Under Condition C(iii), | ( )|S fh
ar − 2 0π    =  O[ h - r  ]. 

 

 Next we consider the asymptotic variance of the VAR spectral estimator.  Parzen (1969) conjectured  

that the asymptotic variance of the VAR spectral estimator is O( h / T ), just as for kernel-based spectral estimators.   

This property was verified by Berk (1974) for the case of univariate AR(∞) processes with i.i.d. disturbances, under 

the condition that h(T)  = o[T 1/ 3].  Berk also required that the lag order grow faster than log(T) / 2logρ0 in the finite-

order ARMA case, and faster than T 1/ 2 r   when  r < ∞; unfortunately, this restriction excludes the use of AIC or 

BIC, since these criteria yield a lag order that grows at the rate log(T ) / 2logρ0  in the finite-order ARMA case, and 

at a rate approaching T 1/ (2 r + 1)  when  r  < ∞.   

 To verify Parzen’s conjecture under much more general conditions, we use Andrews’ (1991)assumptions  

on the higher-order moments and strong-mixing coefficients of {Vt }; these assumptions are sufficient to ensure  

the absolute summability of the autocovariances (as in Condition A(1)) and the absolute summability of the fourth-

order cumulants.   
 
Condition D:  The sequence { }Vt t=−∞

+∞  is α-mixing.  For some ν  > 1, the α-mixing coefficients   

            are of size -3ν / (ν - 1), and sup t  E |Vt | 4ν  < ∞. 

 

 As shown by Hansen (1992), Condition D implies that ( ) ( )~Γ ΓT Tj j−   =  Op(T -1/2 ) uniformly  

in  j  for  0  ≤  j ≤  T - 1.  Using this result, it is straightforward to determine the uniform convergence rate  

of the VAR coefficients: 
 

Lemma 3:  Let the sequence {Vt } satisfy Conditions A-D.  Then ~A AT h h−  = Op(T -1/2 ) uniformly  

       in h(T) for  0 ≤  h(T) ≤  H(T) = O(T 1/ 3 ). 
 

 Lemma 3 generalizes the results of Lewis and Reinsel (1985), who considered VAR(∞) processes with  

i.i.d. innovations and showed that d A AT Th h' ( ~ )−  = Op(T -1/2 ) for any deterministic sequence dT satisfying the 

constraint that d dT T'  ≤  c  < ∞ for all T.   An et al. (1982), Hannan and Kavalieris (1983), Hannan and Deistler 

(1988), and Guo et al. (1990) obtained results parallel to those of Lemma 3 under different assumptions; these 

authors considered VAR(∞) processes with martingale-difference innovations, and showed that | ~ |A AT h h−   

=  O[ T / log(T) ] -1/ 2  uniformly in  h(T)  ≤  H(T)  =  o[T / log(T) ]1/ 2. 

 Since the variance of the VAR spectral estimator is dominated by the variance of the sum of VAR 

coefficients, an upper bound on the variance of ~ST h
ar  can be obtained directly from the uniform convergence rate of 

these coefficients.  An et al. (1982) and Hannan and Kavalieris (1983) used this approach to show that ~S ST h
ar

h
ar− 2   

= O[ h2(T) log(T) / T ]; under the assumption that h(T) → ∞ and h(T) = o[ T / log(T)]1/ 2 , this result is sufficient  

to ensure the consistency of the VAR spectral estimator.  However, to verify Parzen’s conjecture concerning the 

asymptotic variance of the VAR spectral estimator, it is necessary to follow the approach of Berk (1974) in directly 

analysing the convergence rate of the sum of VAR coefficients. 
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Lemma 4:  Let the sequence {Vt } satisfy Conditions A-D.  Then E| ~ |S STh
ar

h
ar− 2  =  O[ h(T) / T ]  

       uniformly in h(T) for 0 ≤ h(T) ≤ H(T) = O(T 1/3). 

 
 From Lemmas 2 and 4, it can be seen that achieving the optimal convergence rate of the VAR spectral 

estimator involves a tradeoff in the choice of VAR lag order, since an increase in h raises the asymptotic variance 

and reduces the asymptotic bias (apart from the special case in which the true dgp is a finite-order VAR).    

Shibata (1979, 1980) analysed the AR lag order sequence generated by a model selection criterion like AIC  

or BIC when the true dgp is an AR(∞) process with i.i.d. Gaussian innovations, and the maximum lag order  

H(T) = o(T 1/ 2 ) .  In this case, AIC yields a lag order growth rate that minimizes the mean-squared error (MSE)  

of all k-step-ahead forecasts and the MSE of the AR estimator of the integrated spectrum .  For finite-order ARMA 

processes, BIC yields the same lag order growth rate as AIC;  for r < ∞, the lag order chosen by BIC grows more 

slowly but asymptotically approaches the geometric rate generated by AIC.  Hannan and Kavalieris (1986)  

obtained similar properties of AIC and BIC when the data are generated by a VAR(∞) process with conditionally 

homoskedastic martingale-difference innovations. 4   The following lemma indicates that these properties of BIC 

continue to hold in the absence of weak stationarity, because the penalty term, h log(T)/T, is sufficiently large to 

dominate the sampling variation of the estimated innovation covariance matrix.  It is likely that the lag order growth 

rate of AIC can be verified under more restrictive assumptions than those of Condition D (e.g., absolute 

summability of the sixteenth-order cumulants, as suggested by Shibata 1981, p.163), but we do not pursue this issue 

further here. 

 

Lemma 5:  Let the sequence {Vt } satisfy Conditions A-D, and let  hB(T)  be the VAR lag order  

selected by BIC, where 0  ≤  hB(T)  ≤  H(T)  =  Co T 1/ (2g + 1)  for some 0 < Co < ∞ and  1 ≤  g < ∞ .    

 (a) Under Condition C(i),  hB(T)  =  p  +  op(1). 

 (b) Under Condition C(ii),  hB(T)   =  (1 +  op(1)) log(T) / 2 log(ρ0). 

 (c) Under Condition C(iii) with g  <  r  <  ∞,  hB(T)   =   (1 +  op(1)) C1 (T / log(T ))1/ (2 r + 1)      

       for some  0  <  C1  <  ∞. 

 (d) Under Condition C(iii) with  0  ≤  r  ≤  g , then  hB(T)   =   (1 +  op(1)) H(T) . 

 
 Finally, using the results of Lemmas 1-5, the convergence properties of the VAR spectral estimator  

can be summarized as follows:  

Theorem 1:  Let the sequence {Vt } satisfy Conditions A-D.  If  h(T)  →  ∞ and  h(T)  =  O( T 1/ 3 ),  

then  | ~STh
ar  -  2π f(0)  |   =  op(1).  If  h(T) =  hB(T) , with  0 ≤  hB(T)  ≤  H(T)  =  Co T 1/ 3   for 0 < Co < ∞,   

then ~STh
ar  has the following properties: 

 (a) Under Condition C(i),   | ~STh
ar  -  2π f(0)  |   =  Op(T -1/ 2 ). 

   (b) Under Condition C(ii),   | ~STh
ar  - 2π f(0) |  = Op[ (T / log(T)) -1/ 2 ]. 

                                                           
4 That is, E(εt εt’ | t-1) = Σ , where t is the σ-algebra of events determined by the innovations εs for s ≤  t.  Further analysis of  
this case may be found in Hannan and Deistler (1988). 
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 (c) Under Condition C(iii) with  1  <  r  <  ∞,   | ~STh
ar  -  2π f(0)  |   =  Op[ (T / log(T))  - r / (2 r + 1) ]. 

 (d) Under Condition C(iii) with  0  ≤  r  ≤  1,    | ~STh
ar  - 2π f(0)  |   =  Op[ T - r /  3 ]. 
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3.3  Convergence Rate of the VARHAC Estimator. 

 The asymptotic properties of VAR spectral estimation given in Sections 3.1 and 3.2 can be readily 

extended to the case of HAC covariance matrix estimation, which typically involves the analysis of estimated 

regression residuals.  In particular, Vt ( )ψ  is a random N-vector for each  p×1 vector of regression parameters ψ  in 

the admissible region Ψ ⊂ ℜ p .   To simplify notation in the following discussion, we will use Vt  to refer to Vt (ψo) 

,  

the regression function evaluated at the true regression parameter vector ψo, and we will use $Vt  to refer toVt T( $ )ψ , 

the regression function evaluated at the regression parameter estimate $ψ T . 

 Thus, we continue to use Γ( )j  to refer to the limiting  j-th order autocovariance evaluated at ψo, 

and ΓT j( )  to refer to the average j-th order autocovariance matrix, as defined in equation (3.1).  The matrices Gh  , 

G∞ , gh  , g∞ , Ah  , A∞ , Σh,, Σ∞ , Sh
ar , and  f (ω) are as defined above, based on the limiting autocovariances 

evaluated at ψo.   Similarly, ~ ( )ΓT j  refers to the sample j-th order autocovariance based on the true series {Vt  }, and 

the matrices  
~GTh , ~gTh  , ~CTh  , ~ATh  , ~ΣTh  , and ~STh

ar  are as previously defined using the sample autocovariances ~ ( )ΓT j .   

Finally, $ ( )ΓT j  refers to the sample j-th order autocovariance based on the estimated series { $Vt }, and the  

matrices $GTh  , $gTh  , $CTh  , $ATh  , and $ΣTh  are constructed using the estimated autocovariances $ ( )ΓT j .   

Then the VAR spectral estimator based on the estimated regression residuals can be expressed as 
$ [ ' $ ] $ [ $' ]S I Q A I A QTh

ar
h h Th Th h Th h= + +− −1 1Σ .   

 To analyze the rate at which the VAR spectral estimator $STh
ar  converges to 2π f (0) , we use the following 

assumptions of Andrews (1991): 
 

Condition E:  The regression function Vt ( )ψ and the estimated regression parameter vector $ψ T satisfy:   

 (1) ( ) ( )( )supt t o t oE V V≥ ′ < ∞1 ψ ψ  

 (2) ( )( ) ( )( ){ }sup sup / ' /t t tV V≥ ∈ ′ ′ < ∞1 E vec vecψ ∂ ψ ∂ ψ ∂ ψ ∂ ψΨ  

 (3) ( )( ){ }sup sup / /t tV≥ ∈ ′ ′ < ∞1 E vecψ ∂ ∂ ψ ∂ ψ ∂ ψΨ  

 (4)   Conditions A-D hold for the stochastic process ( ) ( ) ( )[ ]( ){ }′ ′ − ′V V Vt o t tψ ∂ ψ ∂ ψ ∂ ψ ∂ ψ, / /vec E  

 (5)  ( ) ( )T OT o p$ψ ψ− = 1  

 

 This condition is sufficient to ensure that the use of estimated regression residuals does not affect  

the asymptotic properties of the VAR spectral estimator, as indicated by the following theorem. 
 

Theorem 2:  Let the sequence { $Vt } satisfy Conditions A-E.  If  h(T)  →  ∞ and  h(T)  =  O( T 1/ 3 ),  

then  | $ST h
ar   -  2π f (0)  |   =  op(1).  If  h(T) =  hB(T) , with  0 ≤  hB(T)  ≤  H(T) =  Co T 1/ 3  for  0  <  Co  < ∞,  

then $ST h
ar  has the following properties: 

 (a) Under Condition C(i),  | $ST h
ar   -  2π f (0)  |   =  Op(T -1/ 2 ). 

   (b) Under Condition C(ii),  | $ST h
ar  - 2π  f (0)  | = Op[(T /log(T)) -1/ 2 ]. 

 (c) Under Condition C(iii) with  1  <  r  <  ∞,  | $ST h
ar   -  2π f (0)  |   =  Op[ (T / log(T))  - r / (2 r + 1) ]. 
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 (d) Under Condition C(iii) with  0  ≤  r  ≤  1 ,  | $ST h
ar   -  2π f (0)  |   =  Op[ T - r /  3 ]. 

 
 

4.  COMPARISON WITH KERNEL-BASED ESTIMATORS 

 This section compares the asymptotic and finite-sample properties of the VARHAC covariance matrix 

estimator with those of kernel-based estimators.  In particular, Section 4.1 compares the convergence rates of these 

estimators, and Section 4.2 reports the results of various Monte Carlo simulation experiments. 

 

4.1  Asymptotic Properties 

 For a given kernel k(z): ℜ  → [-1, 1] and bandwidth parameter h , the corresponding spectral estimator  

may be represented as  ST(k, h)  = k j h jTj T
T ( / ) $ ( )Γ= −

−∑ 1
1 .5   It is useful to define the index v = min(q, r), where  

q indicates the smoothness of the kernel k(z) at  z = 0, and  r indicates the smoothness of the spectral density f (ω)  

at ω = 0.  In particular,  q  =  supθ { θ :  limz→0 (1 - κ(z)) / | z |θ  < ∞ }, and  r  is defined by Condition C above.   

If the bandwidth parameter sequence satisfies the restriction that  h(T) ≤  H(T) = Ck T 1/ (2g + 1)  for some 0  <  Ck  <  ∞ 

and  g  > 1/2, then the asymptotic bias of the kernel-based spectral estimator is O[h(T) - v ], and the asymptotic 

variance is O[ h(T)/ T ] (cf. Parzen 1957; Priestley 1982; Andrews 1991).6   When  v  ≥  g , the optimal bandwidth 

parameter sequence h*(T) grows at the rate T 1/ (2v + 1) , and the absolute error of the kernel-based spectral estimator  

is Op[ T  -v / (2v + 1)] ; when  v < g , then h*(T) = H(T), and the absolute error is Op[ T - v / (2g + 1)]. 

 By comparing these properties with those of the VAR spectral estimator (cf. Theorems 1 and 2 above),  

it can be seen that kernel-based spectral estimators face two important limitations:  the cost of ensuring a PSD 

spectral density matrix, and the difficulty of choosing an appropriate bandwidth parameter.  The simple truncated 

kernel estimator assigns weight of unity to all sample autocovariances up to order h, so that the smoothness index   

q  = ∞.  Thus, as originally conjectured by Parzen (1969), the asymptotic bias and the asymptotic variance of the 

simple truncated kernel estimator are of the same order as for the VAR spectral estimator when ν  < ∞ (i.e., when  

the autocovariances do not correspond to a finite-order ARMA process).  If one could choose a bandwidth 

parameter sequence h(T) with a growth rate of T 1/ (2r + 1) , then the absolute error of the truncated kernel estimator 

would be Op[T  - r / (2r + 1)], the same order as that of the VAR spectral estimator.  In practice, however, no data-

dependent bandwidth selection procedure has been developed for the truncated kernel estimator (cf. Priestley 1982, 

pp.460-62; White 1984, p.159; Andrews 1991, p.834), whereas BIC yields a lag order sequence that approaches the 

optimal geometric growth rate for the VAR spectral estimator.  Furthermore, the simple truncated kernel does not 

ensure a PSD estimate of the spectral density at frequency zero, whereas the VAR spectral estimator generates a 

PSD matrix by construction. 

 Within the class of kernels that ensure a PSD spectral density matrix, the smoothness index  q cannot 

exceed 2, and q = 2 for the optimal kernel within this class, the quadratic spectral (QS) kernel.  The analysis of 
                                                           
5 In this case, the jth-order sample autocovariance is constructed by summing Vt Vt-j’ over the range t = j+1 to T instead of the  
range t = H(T) + 1 to T  used in defining the VAR(h) estimator (cf. Section 3.2).   However, under the condition H(T) = O(T 1/3 ),  
the difference between these two definitions is op(T - 1/2 ). 
6 The restriction that g > 1/2 is needed for the case of estimated residuals, as in HAC covariance matrix estimation; kernel-based spectral 
estimation with observed data only requires that g > 0  (cf. Andrews 1991). 
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Andrews (1991) and Newey and West (1994) focused on the case where r > 2, so that the optimal bandwidth 

parameter sequence grows at rate T 1/5, and the absolute error of the QS kernel estimator is Op[ T  -2/5].  The VAR 

spectral estimator utilizes a slower lag order growth rate in this case:  the lag order chosen by BIC approaches  

a geometric growth rate of T 1/ (2r + 1) , and the VAR spectral estimator converges in probability at a geometric rate 

approaching T  - r / (2r + 1).  When  r < 2, the QS kernel estimator could achieve the same convergence rate as the VAR 

spectral estimator if the bandwidth parameter sequence were optimally chosen (which would require a reasonable 

estimate of  r).  However, using the data-dependent bandwidth selection procedures proposed by Andrews (1991)  

or Newey and West (1994), the bandwidth parameter grows too slowly for  r < 2, so that the absolute error of the  

QS kernel estimator is Op[ T  -r/ 5].  In contrast, even for  r  < 1 (for which BIC yields the maximum lag order growth 

rate of T 1/ 3 ), the absolute error of the VAR spectral estimator is Op[ T  -r/ 3 ]. 

 To understand the greater asymptotic efficiency of the VAR spectral estimator compared with PSD kernel-

based estimators, it is useful to note that the VAR spectral estimator can be expressed as $ $ ( )*S jT h
ar

T hj= =−∞
∞∑ Γ , 

where the $ ( )*ΓT h j  are the autocovariances implied by the estimated VAR(h) model.  The OLS orthogonality 

conditions ensure that $ ( )*ΓT h j  =  $ ( )Γh j  for  | j |  ≤  h , while the implied higher-order autocovariances $ ( )*ΓT h j  

decline exponentially toward zero as  j → ∞.  Thus, the VAR spectral estimator can be viewed as a procedure  

that assigns weights of unity to all sample autocovariances up to order h (just as with the simple truncated kernel 

estimator), and ensures a PSD spectral density matrix by efficiently extrapolating the higher-order autocovariances.  

In contrast, kernel-based procedures guarantee a PSD estimate by assigning weights less than unity to the sample 

autocovariances, which incurs substantial cost in terms of asymptotic bias. 

 This bias differential between VAR and PSD kernel-based spectral estimators can be illustrated by 

considering the MA(1) process  yt  =  εt  + φ εt-1 , where εt is i.i.d. with mean zero and variance 1/(1+φ)2, so that  

the spectral density of  yt at frequency zero is equal to unity.  Figure 1 depicts the absolute value of the bias of the 

VAR spectral estimator and the QS estimator as a function of h (i.e., the AR lag order or the bandwidth parameter, 

respectively).  For φ  = 0.7 (Panel A), the absolute bias of the VARHAC estimator is initially greater than that of the 

QS estimator; however, since the AR bias shrinks more rapidly as a function of h, this bias becomes smaller than 

that of the QS estimator for h ≥ 14.  For φ  = −0.7 (Panel B), the absolute bias of the VARHAC estimator is 

substantially smaller than that of the QS estimator for all  h  > 0; for example, the bias differential between the two 

estimators  

is about 1:3 when h  = 10.  
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4.2.  Finite-Sample Properties 

 In this section, Monte Carlo simulation experiments are used to compare the finite-sample properties of the 

VARHAC estimator with those of the QS and QS-PW(1) estimators considered by Andrews (1991) and Andrews 

and Monahan (1992).  The QS and QS-PW(1) estimators use the quadratic spectral kernel, and the data-dependent 

bandwidth parameter is determined using a univariate AR(1) model for each residual; the QS-PW(1) estimator 

augments this procedure with first-order VAR prewhitening.  We also consider a variant of the VARHAC estimator, 

referred to as VARHAC(AIC), in which the lag order of each VAR equation is chosen using AIC rather than BIC.   

In each simulation experiment, we analyse the extent to which the VARHAC and QS estimators provide accurate 

inferences in two-tailed t-tests of the significance of the estimated coefficients.  In all experiments, the results are 

computed for sample length T  = 128, using 10,000 replications.  Additional simulation results and comparisons  

with other kernel-based estimators may be found in Den Haan and Levin (1997). 

4.2.1  The Andrews-Monahan (1992) Experiments 

 The first simulation experiment utilizes the same design as in Andrews and Monahan (1992), who 

considered several linear regression models, each with an intercept and four regressors, and the OLS estimator $ψ T  

for each of these models: 

 

 (4.1)  Y X u t Tt t t= + =ψ 0 1, , ,L  and $ψ T t tt

T
t tt

T
X X X Y= ′





′



=

−

=∑ ∑1

1

1
. 

 
Andrews and Monahan (1992) considered regression models with five different types of dgps for the regressors and 

errors:  (a) homoskedastic AR(1) processes; (b) AR(1) processes with multiplicative heteroskedasticity overlaid on 

the errors; (c) homoskedastic MA(1) processes; (d) MA(1) processes with multiplicative heteroskedasticity overlaid 

on the errors; and (e) homoskedastic MA(m) processes with linearly declining MA parameters.  A range of different 

parameter values is considered for each type of  dgp.  All elements of ψ0 are equal to zero. 

 For each HAC covariance matrix, we perform a two-tailed t-test of the null hypothesis that the coefficient 

on the first non-constant regressor is equal to its true value.  Figure 2 reports the true confidence level (at a nominal 

90% confidence level) for the QS-PW(1) estimator (gray column), the VARHAC estimator (black column), and the 

VARHAC(AIC) estimator (white column).  These results indicate that the inference accuracy of the VARHAC 

estimator generally matches that of the QS-PW(1) estimator, despite the fact that many of the dgps in this simulation 

experiment might be expected to favor the latter.  In the AR(1) models, for example, QS-PW(1) imposes first-order 

prewhitening, whereas the VARHAC and VARHAC(AIC) estimators use a model selection criterion to determine 

the lag order.  For the MA models, the QS-PW(1) estimator consistently provides better coverage ratios than the 

VARHAC and ARHAC(AIC) estimators, which utilize VAR representations to approximate the true MA processes.  

It should be noted that the VARHAC and VARHAC(AIC) estimators yield similar coverage ratios for most of the 

dgps under consideration, and neither estimator consistently outperforms the other.  
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4.2.2 MA(1) Processes with Negative Autocorrelation 

 Although the Andrews-Monahan (1992) experiments only considered MA(1) processes with positive 

autocorrelation, it is also useful to compare the performance of the VARHAC and QS estimators for MA(1) 

processes with negative autocorrelation.  In particular, consider the following dgp: 
 
(4.2) Yt   =  µ  +  εt    +   θ εt-1. 

where µ = 0, the random variable εt is an i.i.d. standard normal process, and the parameter θ varies from -0.1 to -0.9.  

For each HAC estimator, we perform a two-tailed t-test of the significance of the sample mean.   

 For each value of the MA(1) parameter θ, Table 1A reports the true confidence level (at a nominal 90% 

significance level) for each estimator, while Table 1B reports the average bandwidth parameter chosen by QS and 

QS-PW(1) and the average AR lag order chosen by VARHAC and VARHAC(AIC).  The VARHAC estimators 

consistently provide more accurate coverage ratios than the QS or QS-PW(1) estimators, even when the MA 

representation is close to being non-invertible.  Since the average bandwidth parameters chosen by the QS and  

QS-PW(1) procedures are roughly similar to the average lag orders chosen by AIC and BIC, this difference in 

coverage ratios can be mainly attributed to the lower bias of AR approximation compared with the QS kernel,  

as shown in Figure 1B for the case where θ = -0.7. 

 This experiment also highlights the limitations of using the estimated coefficients of an arbitrary parametric 

model to construct the data-dependent bandwidth parameter.  As shown in Table 1B, the average bandwidth 

parameters used by QS and QS-PW(1) are much too small in comparison with the optimal value constructed  

using the population moments of the true dgp.  In particular, for a scalar MA(1) process, the bandwidth parameter 

sequence that minimizes the asymptotic MSE of the QS spectral estimator can be expressed as an increasing 

function of  f f' ' ( ) / ( )0 0   =  | θ | / (1+θ)2  =  | ρ1 | / (1 + 2ρ1 ), where ρ1 indicates the first-order autocorrelation 

of Yt.   

Thus, the optimal bandwidth parameter for an MA(1) process is fairly small for all ρ1  > 0, and grows arbitrarily 

large as ρ1  →  -1/2.  In contrast, for the QS and QS-PW(1) estimators, the bandwidth parameter is determined  

by the estimated coefficients of an AR(1) model, for which f f' ' ( ) / ( )0 0   =  2 | ρ1 | / (1-ρ1 )2.  As a result,  

the data-dependent bandwidth parameter implied by the AR(1) model remains small even when the estimated  

value of ρ1 approaches  -1/2.   

 These considerations suggest that the performance of the QS estimator can be improved substantially  

if the data-dependent bandwidth parameter is constructed using the correct specification of the true dgp.  For this 

experiment, Table 1B reports that the average value of the data-dependent bandwidth parameter is fairly close to  

the optimal value if the bandwidth parameter is calculated under the assumption that the dgp is an MA(1) rather 

than an AR(1), and Table 1A shows that the resulting estimator, referred to as the QS-MA(1) estimator, yields much 

more accurate coverage ratios than either the QS or QS-PW(1) estimators.  Nevertheless, the analysis in the 

previous paragraph indicates that the QS-MA(1) estimator may perform very poorly if the true dgp is an AR(1), 

because  
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the data-dependent bandwidth parameter associated with the QS-MA(1) estimator will be much smaller than the 

optimal bandwidth parameter for  ρ1  >  0 and much larger for  ρ1  <  0.  Since the true dgp is unknown in practice, 

one might consider employing a model selection criterion to choose an appropriate parametric model, which  

would then be used in constructing the data-dependent bandwidth parameter of the kernel-based spectral estimator. 

However, it seems equally reasonable to estimate the spectral density directly from the estimated parameters of  

the chosen model. 

 Finally, while VARHAC(AIC) yields noticeably better performance than VARHAC in this experiment,  

it should be noted that both AIC and BIC appear to be too conservative in choosing the AR lag order.  The final 

column of Table 1B indicates the lag order at which the VARHAC estimator yields a confidence level closest to the 

nominal 90% level; this “ideal” lag order is consistently higher than that chosen by either AIC or BIC.  Hall (1994) 

and Ng and Perron (1995) have obtained similar results in experimental studies concerning the choice of AR lag 

order for the augmented Dickey-Fuller unit root test.  Thus, the development of alternative model selection criteria 

for VAR spectral estimation may be a fruitful topic for further research.  

 

4.2.3  Higher-order Autoregressive Components 

 The VARHAC estimator may be viewed as generalizing the Andrews-Monahan (1992) approach, such  

that the order of VAR prewhitening is determined by a model selection criterion rather than being fixed a priori,  

and no kernel is applied since the prewhitened residuals are approximately uncorrelated.   The advantages of  

model selection-based VAR prewhitening were not evident in the experiments reported in section 4.2.1:  in those 

experiments, the AR component in the vector of residuals, Vt, was at most of order one, and of course the QS-PW(1) 

estimator imposes first-order prewhitening.  Now we consider the following scalar AR(2) process: 

(4.3)    Yt     =  µ   +  
φ
2

 (Yt-1  + Yt-2 )   +   εt 

where µ = 0, εt is an i.i.d. standard normal process, and φ varies from 0.3 to 0.9.   

 Table 2 reports the true confidence level (at a nominal 90% significance level) of a two-tailed t-test of  

the significance of the sample mean of Yt.  The VARHAC and VARHAC(AIC) estimators clearly outperform  

the QS-PW(1) estimator, even for values of φ as low as 0.5.  Given the success of first-order prewhitening  

in the Andrews-Monahan (1992) experiments, it is not surprising that higher-order VAR prewhitening is also 

advantageous.  It is important to note, however, that the VARHAC estimator does not impose the assumption that  

the residuals are generated by an AR(2) process.  For this experiment, a lag order of two was chosen by BIC (AIC) 

in 14% (36%), 60% (67%), 90% (77%), and 96% (78%) of all replications for parameter values equal to 0.3, 0.5, 

0.7, and 0.9, respectively.  

 

4.2.4  Multivariate Applications with Heterogeneous Components 

 The final set of simulation experiments document the advantages of using the VARHAC procedure when 

the autocovariance structure differs substantially across components of the residual vector, Vt( $ψ T ).  In such cases, 
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the VARHAC estimator permits the lag order to vary across equations in the VAR (and across the variables in each 

equation), whereas a kernel-based estimator must use the same bandwidth parameter for every element of Vt( $ψ T )  

to ensure a PSD covariance matrix (cf. Robinson 1996).   

 To illustrate this issue, we consider the OLS estimator for the following scalar model: 
 
(4.4)    Yt   =   αXt    +   βZt  +   ut  
 

where the random variable Xt  =  0.95 Xt-1  + εt , the random variable εt is an i.i.d. standard normal process, the 

random variable Zt is normally distributed with zero mean and variance equal to the variance of Xt , and  α  = β  = 0.    

We consider two alternative dgps for the random variable ut:  (1) ut  =  vt  +  θ vt , with the parameter θ varying from 

-0.1 to -0.9; and (2) ut  =  φ ut-1  +  vt , with φ varying from 0.1 to 0.9; in both cases, the random variable vt is an i.i.d. 

standard normal process.  Thus, Vt consists of two components, one of which (Zt ut) is serially uncorrelated, while  

the other (Xt ut)  has the same autocovariance structure as either an MA(1) process with negative autocorrelation  

or an AR(1) process with positive autocorrelation.  Since Xt and Zt are independent and the two components of Vt  

are mutually uncorrelated at all leads and lags, both the spectral density matrix f(0) and the asymptotic covariance 

matrix Ω are diagonal.  Thus, to a first approximation, the HAC standard error of $α  will depend on the estimated 

spectral density of the persistent component (Xt ut), whereas the HAC standard error of $β  will depend on the 

estimated spectral density of the idiosyncratic component (Zt ut). 

 We use each HAC covariance matrix estimator to conduct inferences concerning the significance of α  

and β.  To highlight the fundamental issue, we focus on the QS estimator and on the QS-MA(1) estimator defined  

in section 4.2.2; in the presence of higher-order autocorrelation, similar considerations would apply to the QS-

PW(1) estimator.  For each kernel-based estimator, the specified parametric model is used to construct the data-

dependent bandwidth parameter, with equal weights on both components of Vt.   For VARHAC and 

VARHAC(AIC),  

the specified model selection criterion is used to determine a separate lag order for each equation in the VAR. 

 Table 3 provides results for the case where ut  is an MA(1) process, and Table 4 reports the corresponding 

results for the case where ut is an AR(1) process.  In both cases, the VARHAC and VARHAC(AIC) estimators 

consistently provide more accurate coverage ratios than either the QS or QS-MA(1) estimators.  Panels A and B  

of each table indicate the true confidence levels (at the nominal 90% confidence level) of two-tailed t-tests of α and 

β, respectively, while Panel C reports the average bandwidth parameter of each kernel-based estimator and the 

average lag order chosen by AIC and BIC for each VAR equation.    

 In light of the analysis in Section 4.2.2, it is not surprising that the kernel-based estimators yield inaccurate 

inferences concerning α when the bandwidth parameter is constructed based on an incorrect specification for the 

dgp of this component.  Thus, Table 3A shows that the QS estimator generates inaccurate inferences about α when 

the persistent component is generated by an MA(1) process with negative autocorrelation, while Table 3B shows 

that  

the QS-MA(1) estimator yields very poor inferences about α when the persistent component is generated by an 

AR(1) process with positive autocorrelation.   
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 However, even when the dgp is correctly specified, the performance of the kernel-based estimators is 

adversely affected by the constraint that the same bandwidth parameter must be used in analysing both components 

of Vt.  When the persistent component is generated by an MA(1) process, Table 3 shows that the average bandwidth 

parameter chosen by QS-MA(1) is generally much smaller than the average value reported in Table 1B for the 

corresponding scalar process.  Thus, the QS-MA(1) estimator maintains reasonably accurate coverage ratios for β 

(which is related to the idiosyncratic component), whereas the coverage ratios for α are substantially worse than 

those reported for scalar MA(1) processes in Table 1A.  When the persistent component is generated by an AR(1) 

process, Table 4 indicates that the average bandwidth parameter chosen by the QS estimator increases sharply with 

the value of φ, leading to deteriorating accuracy of inferences concerning β.   

 These results are directly attributable to the construction of the data-dependent bandwidth parameter, 

which can be expressed as an increasing function of  |  fp’’(0) | / ( fp(0) + fi(0) ), where the subscripts p and i refer to 

the persistent and idiosyncratic components, respectively.  Since both components have equal variance by 

construction,  fp(0) is much smaller than  fi(0) when the persistent component is generated by an MA(1) process with 

negative autocorrelation.  In this case, the data-dependent bandwidth parameter will tend to be close to the optimal 

value  

for the idiosyncratic component, and will be much smaller than the optimal value for the idiosyncratic component. 

On the other hand, when the persistent component is generated by an AR(1) process with positive autocorrelation,  

fp(0) is much larger than  fi(0), so that the data-dependent bandwidth parameter will be much closer to the optimal 

value for the persistent component, and will be much larger than the optimal value for the idiosyncratic component. 

 In contrast, the VARHAC and VARHAC(AIC) estimators can use a different AR lag order in modelling 

each component of Vt .  Thus, as shown in Tables 3 and 4, both BIC and AIC consistently select a low lag order  

for the idiosyncratic component and a substantially higher lag order for the persistent component.  As a result,  

both estimators yield reasonably accurate inferences concerning β , while the coverage ratios for α are similar to 

those shown in Figure 1A (for the corresponding scalar AR(1) processes) and in Table 1A (for the corresponding 

scalar MA(1) processes).   
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Figure 1 
 Comparison of VARHAC vs. QS Bias for MA(1) Processes 

 

 A.  MA(1) Parameter  =  0.7 
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 B.   MA(1) Coefficient  =  -0.7 
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Note:  Each panel indicates the absolute value of the bias (relative to the true spectral density) for the QS-estimator and the VARHAC estimator 
as functions of the bandwidth parameter and AR lag order, respectively.   These biases are computed using the population moments of the 
univariate MA(1) process Yt = εt  + θεt-1 , where εt is an i.i.d. normal process with mean zero and variance 1/ (1+θ)2; thus, the true spectral density 
at frequency zero is equal to unity. 
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Figure 2 
The Andrews and Monahan (1992) experiments 

(True confidence level of the nominal 90% confidence interval) 
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      Panel B:  MA examples 
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Note:  For each dgp and each HAC covariance matrix, this figure reports the frequency that a two-tailed t-test at the nominal 90% confidence 
level does not reject the hypothesis that the coefficient corresponding to the first non-constant regressor is equal to its true value.  This frequency 
is reported for the QS-PW(1) estimator (gray column); the VARHAC estimator (black column); and a variant of the VARHAC estimator  
that uses AIC rather than BIC (white column).   The VARHAC estimator estimators are computed using a maximum lag order of 4.  Panel A 
indicates the results for experiments in which the regressors and the error term are generated by AR(1) processes; for each experiment, the value 
of the AR(1) coefficient is indicated below the x-axis.  Panel B reports the results for experiments in which the regressors and the error term are 
generated by MA processes; for each experiment, either the MA(1) coefficient or the order q of the MA process is indicated below the x-axis.   
The sample length T = 128, and the results are computed using 10,000 replications. 
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Table 1  
MA(1) Processes with Negative Autocorrelation 

 
A. Inferences about the significance of the mean 

                        True confidence level of the nominal 90% confidence interval 
 

θ    QS QS-PW(1) QS-MA(1)   VARHAC VARHAC (AIC) 

-0.1    90.7    89.7 90.0   89.4 88.7 

-0.3    93.2    92.9 90.4   91.9 89.8 

-0.5    97.0    97.3 89.7   94.1 90.9 

-0.7    99.8    99.9 90.1   97.2 95.6 

-0.9    100.    100. 96.9   99.9 99.9 

 

B.   Bandwidth Parameter and AR Lag Order Selection 

 

 Average Bandwidth Parameter               Average AR Lag Order 
θ    QS QS-PW(1) QS-MA(1) Optimal   BIC  AIC “Ideal” 

-0.1    1.7    0.7 2.1 2.0   1.1 1.4 1 

-0.3    2.2    1.0 4.0 3.3   1.2 1.7 2 

-0.5    2.4    1.5 7.3 6.1   1.7 2.5 4 

-0.7    2.5    1.8 10.8 10.5   2.6 3.4 7 

-0.9    2.5    2.0 11.7 27.8   3.3 3.8 12 

 
Note:  The data are generated as follows: Yt = εt + θεt-1, where εt is an i.i.d. standard normal process. The VARHAC estimator selects the AR lag 
order using Schwarz’ Bayesian Information Criterion (BIC), while VARHAC (AIC) uses Akaike’s Information Criterion; in both cases, the 
maximum AR lag order is equal to 4.  For the QS and QS-PW(1) estimators,  the data-dependent bandwidth parameter is determined by an AR(1) 
parametrization; for the QS-MA(1) estimator, the bandwidth parameter is determined by an MA(1) parametrization.  The QS-PW(1) estimator 
uses AR(1) prewhitening, whereas no prewhitening is performed for the QS or QS-MA(1) estimators.  The sample length T = 128,  
and the results are computed using 10,000 replications.  For each value of θ and each HAC estimator, panel A shows the true confidence level (at 
a nominal 90% significance level) of a two-tailed t-test of the significance of the mean of Yt.  Panel B indicates the average bandwidth parameter 
or AR lag order chosen by each estimator.  The optimal bandwidth parameter for QS is calculated using population moments and the correct 
specification of the dgp.   The “ideal” lag order is the one at which the true confidence level of the VARHAC estimator is closest to 90%. 
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Table 2 
Higher-Order Autoregressive Components 

 
True confidence level of the nominal 90% confidence interval 

φ QS-PW(1) VARHAC VARHAC (AIC) 

0.3 82.8 81.8 83.8 

0.5 76.3 83.8 85.7 

0.7 67.8 84.6 84.5 

0.9 50.6 76.8 76.4 

 
Note: The data are generated by Yt = 0.5φ Y1-1 + 0.5φ Yt-2 + εt , where εt is an i.i.d standard normal random variable.  The QS-PW(1) and VARHAC 
estimators are described at the end of  Table 1.   The sample length T = 128, and the results are computed using 10,000 replications. For each 
value of φ and each HAC estimator, this table indicates the true confidence level (at a nominal 90% significance level) of a two-tailed  
t-test of the significance of the mean of Yt. 
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Table 3 
Bivariate Applications with an MA(1) Component 

 
A.  Inferences about the significance of  α 

True confidence level of the nominal 90% confidence interval 

θ QS QS-MA(1) VARHAC VARHAC (AIC) 

 -0.1 89.9 89.1 90.8 87.4 

 -0.3 93.5 90.9 92.4 88.2 

 -0.5 97.5 93.5 94.3 90.0 

 -0.7 99.5 96.7 96.8 93.4 

 -0.9 99.9 98.6 98.4 96.2 

 

B.  Inference about the significance of β 

True confidence level of the nominal 90% confidence interval 

θ    QS QS-MA(1)   VARHAC   VARHAC (AIC) 

 -0.1 88.8 88.5 89.2 88.6 

 -0.3 88.7 88.1 89.1 88.5 

 -0.5 88.8 87.9 89.1 88.6 

 -0.7 88.7 88.1 89.0 88.5 

 -0.9 88.7 87.9 88.9 88.5 

 
 
C.  Bandwidth parameter and AR lag order selection 

 

 Average Bandwidth  Average AR Lag Order 
 Parameter   BIC      AIC 

θ    QS    QS-MA(1) Xt ut Zt ut Xt ut Zt ut 

-0.1    1.7 2.0   0.2 0.01  1.1 0.4 

-0.3    1.8 2.6   0.6 0.01  1.7 0.4 

-0.5    1.9 3.1   1.2 0.02  2.2 0.5 

-0.7    1.9 3.3   1.6 0.03  2.7 0.5 

-0.9    1.9 3.4   1.9 0.03  3.0 0.5 

 
Note:  The data are generated as follows:  Yt  =  αXt  + β Zt  +  ut , where Xt  = 0.95 Xt-1 + εt ;  ut  =  vt  +  θνt-1 ; α = β = 0;  the random variables εt 
and vt  are generated by i.i.d. standard normal processes; and the random variable Zt is generated by a normal process with zero mean and variance 
equal to the variance of Xt .  The QS and VARHAC estimators are described at the end of  Table 1.  For each VARHAC estimator,  
the specified model selection criterion is used to determine a separate AR lag order for each equation.   The sample length T =128, and the results 
are computed using 10,000 replications.  For each value of θ and each HAC estimator,  panels A and B indicate the true confidence levels  
(at a nominal 90% significance level) of  two-tailed t-tests of the significance of α and β, respectively.  For each value of θ, panel C shows the 
average bandwidth parameter or AR lag order chosen by each estimator. 
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Table 4 
Bivariate Applications with an AR(1) Component 

 
A.  Inferences about the significance of α 

True confidence level of the nominal 90% confidence interval 

φ QS QS-MA(1) VARHAC VARHAC (AIC) 

  0.1 87.0 86.9 85.9 85.6 

  0.3 84.5 83.7 83.4 84.4 

  0.5 82.0 79.4 84.7 83.7 

  0.7 78.1 70.3 83.1 81.7 

  0.9 69.9 52.1 76.6 75.7 

 

B.  Inference about the significance of β 

True confidence level of the nominal 90% confidence interval 

φ    QS QS-MA(1)   VARHAC   VARHAC (AIC) 

  0.1 88.7 88.7 89.1 88.7 

  0.3 88.3 88.7 89.2 88.6 

  0.5 87.6 88.5 89.0 88.3 

  0.7 86.4 88.0 89.5 88.8 

  0.9 82.4 87.7 89.4 88.3 

 
 
C.  Bandwidth parameter and AR lag order selection 

 

 Average Bandwidth  Average AR Lag Order 
 Parameter   BIC      AIC 

φ    QS    QS-MA(1) Xt ut Zt ut Xt ut Zt ut 

0.1      2.0 1.7   0.1 0.02  1.0 0.4 

0.3      3.2 2.1   0.5 0.02  1.5 0.4 

0.5      5.0 2.4   1.0 0.04  1.7 0.5 

0.7      8.0 2.6   1.1 0.08  1.7 0.7 

0.9    15.5 2.7   1.1 0.14  1.6 1.1 

 
Note:  The data are generated as follows:  Yt  =  αXt  + β Zt  +  ut , where Xt  = 0.95 Xt-1 + εt ;  ut  =  φ ut-1  +  νt ; α = β = 0;  the random variables εt 
and vt  are generated by i.i.d. standard normal processes; and the random variable Zt is generated by a normal process with zero mean and variance 
equal to the variance of Xt .  The QS and VARHAC estimators are described at the end of  Table 1.  For each VARHAC estimator,  
the specified model selection criterion is used to determine a separate AR lag order for each equation.   The sample length T =128, and the results 
are computed using 10,000 replications.  For each value of φ and each HAC estimator,  panels A and B indicate the true confidence levels (at a 
nominal 90% significance level) of  two-tailed t-tests of the significance of α and β, respectively.  For each value of θ, panel C shows the average 
bandwidth parameter or AR lag order chosen by each estimator. 
 



A-1 

  
 

Proof of Lemma 1:   

 Condition A is sufficient to ensure that {Vt } meets Grenander’s (1954) conditions for asymptotic 

stationarity (cf. Hannan 1970, p.77). Condition A(2) ensures that the average jth-order autocovariance 

converges to a limiting value for each integer j.  Condition A(4) ensures the “persistence of excitation;”  

i.e., the process { Vt } has positive variance infinitely often, so that the sum of individual variances 

diverges to infinity.  Finally, Conditions A(1) and A(2) ensure asymptotic negligibility; i.e., as the sample 

length T grows arbitrarily large, the limiting autocovariances are not affected by the exclusion of a finite 

number  

of observations.   Finally, equation (3.1) implies the symmetry condition Γ ΓT Tj j( ) ( )'=  for all  | j | < T. 

 Thus, the limiting autocovariances form a positive semi-definite sequence; i.e., det(GM  ) ≥ 0 for  

all M ≥ 1 (cf. Hannan 1970, p.77).   Furthermore, the limiting autocovariances are identical to those of  

a weakly stationary Gaussian process (Doob 1953, Theorem X.3.1, p. 473; Ibragimov and Linnik 1971, 

p. 311).  The absolute summability of the limiting autocovariances follows from Condition A(1), ensuring 

that  Γ(j)  →  0  as  j  → ∞, so that the corresponding weakly stationary process contains no purely 

deterministic harmonic components (cf. Priestley 1982, p.230).  Given the absolute summability of the 

limiting autocovariances, the Riesz-Fischer Theorem indicates that the function  f(ω) ∈  L2[ -π, π] and  

that ( ) ( ) ( )Γ j f i j d=
−∫ ω ω ω

π

π
exp  (cf. Sargent 1987, p. 249).  Since the limiting autocovariances form  

a positive semi-definite sequence,  f(ω) is a Hermitian positive semi-definite matrix function, by Theorem 

II.11 of Hannan (1970, p.78).  Furthermore, there exists a weakly stationary Gaussian process with spectral 

density  f(ω) (cf. Ibragimov and Linnik 1971, p. 311). 

 Under Condition B, the spectral density f(ω) can be factorized into a vector MA(∞) representation 

(cf. Wold 1938; Theorem IV.6.2 of Doob 1953, pp.160-161; Hannan 1970, pp.157-163).  Condition B also 

implies that the MA coefficients are absolutely summable (cf. Theorems 3.8.2 and 3.8.3 of Brillinger 1981, 

pp.76-78), and that all roots of Θ(z) are outside the unit circle (cf. Nsiri and Roy 1993).  Finally, Condition 

B ensures that the vector MA(∞) representation can be inverted to obtain a vector AR(∞) representation 

with absolutely summable VAR coefficients (cf. Nsiri and Roy (1993).  Similar results may also be found 

in Fuller (1996, Theorems 2.8.2 and 4.4.1, pp.78-180), among many other references.  The final statement 

of Lemma 1 follows directly from Theorems 3.8.2 and 3.8.3 of Brillinger (1981, pp.76-78). 

 Finally, the validity of the infinite-order Yule-Walker equations can be confirmed by noting that 
1

2π
ωωe di L∫   =   1 for L = 0 and  1

2π
ωωe di L∫   =  0 for L ≠ 0.  Since Θ*(z) = [A*(z)]-1, we have  

A(ei ω) f(ω) = Σ Θ* (ei ω), i.e.,  

(A1) ( )A j k e ei j k

kj
L

i L

L
( ) '( )Γ Σ Θω ω−

=−∞

∞

=

∞
−

=

∞
∑∑ ∑=

0 0
.   

By multiplying both sides of (A1) by e-i  ωm   for m > 0, and then integrating over ω ∈  [-π, π] we obtain 

( )A j j mj ( )Γ − ==
∞∑ 0 0 , i.e. ( ) ( ) ( )Γ Γ Γ' ' ( ) 'j m A j m mj − = − − = −=

∞∑ 1 .  Collecting these equations 
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together for all m ≥ 1, we obtain G∞ A∞ = g∞.  By integrating both sides of (A1) over ω ∈  [-π, π] , and 

dividing both sides by 2π , we obtain  A j jj ( ) ( )Γ Σ=
∞∑ =0 .   Since Σ is symmetric, transposing both sides 

yields ( )Σ Γ Γ= = −=
∞

∞ ∞∑ ' ( ) ' ( ) 'j A j g Aj 0 0 .    

 

Proof of Lemma 2:     

 Let Mh = [A′h Qh]-1 and M∞ = [A′∞ Q∞ ]-1.  Then S f M M M Mh
ar

h h h− = − ∞ ∞ ∞( ) ' '0 Σ Σ  

 ( )= − + − + −∞ ∞ ∞ ∞ ∞ ∞( ) ' ' ' ) '(M M M M M M M Mh h h h h hΣ Σ Σ Σ .   Lemma 1 ensures that  

det[A′hQh] ≠ 0 and that det[A′∞Q∞] ≠ 0, so that  | Mh | = O(1) and | M∞ | = O(1).  Furthermore,  

the inverse function is continous at A′∞Q∞, , so that  |Mh - M∞ |  = O( |A′h Qh  -  A′∞Q∞ | ). 

Thus,  | ( ) |S fh
ar − 0    =   max ( )′ − ′ −∞ ∞ ∞A Q A Qh h h, Σ Σ .   

 Using the definitions of gh , g∞ , Gh , and G∞ given below Condition B, it is useful to define the 

following partitions: G
G G

G G
g

g
g

h h

h h

h

h
∞

+

+ ++
∞

+
=








 =









'

, , and the corresponding partitions A
A
A

h

h
∞

∞

∞ +
=








  

and Q
Q
Q

h

h
∞

+
=








 .  Under Conditions A and B, Hannan and Deistler (1988, p. 271) showed that   

| Σh  -  Σ∞ |  = O( |A′∞h+ |2 ) .  We will show below that | A′h Qh  -  A′∞Q∞  |  = O( |A′∞h+ | ) , so that  

| ( ) |S fh
ar − 0   =  O( | A′∞h+ | ).  This result directly implies the result given in Lemma 2(a).   

Lemma 2(b) follows from the property that  | A′∞h+ |  =  O( ρo
-h )  (cf. Hannan and Deistler 1988,  

pp.259-260).  Lemma 2(c) follows directly from Lemma 1, which indicates that | A′∞h+ |  =  O( h -r ). 

 Since |Qh |  =  |Qh+ |  =  1, it should be noted that  | A′h Qh  -  A′∞Q∞  | ≤   | A′h - A′∞h |  +  | A′∞h+ | .   

It can be seen that  Gh  A∞h   +  Gh+   A∞h+   =  gh, , so that  A′h   = g′hGh
-1   =  A′∞h    +  A′∞h+ G′h+ Gh

-1 .   

Thus, | A′h - A′∞h |  ≤  | A′∞h+ |   |G′h+ |  |Gh
-1 | .  Condition A ensures that  |G′h+ |  ≤  | ( )|Γ jj ∞=−∞

+∞∑  < +∞   

for all h > 0.  Finally, we verify that  |Gh
-1 |  = O(1) for all h > 0.  This result was given in Theorem 6.6.11  

of Hannan and Deistler (1988, pp. 267-268) for a weakly stationary, purely non-deterministic process  

under the restriction that q > 1/2, but it is straightforward to obtain the result under more general 

assumptions, based on the properties of the limiting autocovariances and spectral density function.   

 The symmetry of Gh  ensures that Gh  =  Uh Λh Uh′ , where Uh  is orthonormal and Λ h  is the 

diagonal matrix of eigenvalues of Gh .   Conditions A and B ensure that the eigenvalues of Gh are  

uniformly bounded away from zero and infinity (cf. Theorems 9.2(a) and 9.6(a) of Grenander and Szegö 

1958, pp.147-154).  Thus,  |Gh
-1 |  ≤  | Uh |  | Λh

-1 |  | Uh′ |  <  +∞  for all finite h.  Thus, it only remains to 

verify that Gh
−1 remains bounded in the uniform norm as h → ∞.  Under Condition A, the Hankel matrix   

G∞  =  U∞  Λ∞ U∞′ , where the elements of Λ ∞ are given by the eigenvalues of f(ω) for ω∈  [ 0, π ].   

The eigenvector matrixU ∞ is determined by the values of sin(ω) and cos(ω) for ω∈  [ 0, π ], and is  

identical for all weakly stationary matrices with absolutely summable autocovariances (cf. Theorem  
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4.2.1 of Fuller  1996, p. 154).  Now Theorem 1(a) indicates that f(ω) can be expressed as 

( )f A e A ei iω ω ω= − −[ ( )] [ *( )]1 1Σ , where det( Σ )  >  0, and the vector AR(∞) coefficients {A( j )}  

are absolutely summable. Thus, under Conditions A and B, G∞
−1 is the Hankel matrix of a weakly 

stationary, purely non-deterministic process with autocovariances C( j) and spectral density function  

g f A e A ei i( ) ( ) *( ) ( )ω ω ω ω= =−1 Ω , where Ω Σ= −1 ;  in other words, g(ω) is the spectral  

density of a vector MA(∞) process, with MA coefficients B( j)  =  A′( j ).  Thus, the result follows  

from the absolute summability of the autocovariances C( j), which is implied by the absolute summability  

of the MA coefficients: 
 

(A2) ( ) ( ) ( )G C j B j B k
kjj

∞
−

=

∞

=

∞

=−∞

∞
= ≤ < + ∞∑∑∑1

00
Ω '  

 

Proof of Lemma 3: 

 Using the least-squares orthogonality conditions ~ ~ ~G A gT h T h T h=  and G A gh h h= , it is evident 

that ( )~ ~ ~ ~ ~A A G g g G G G AT h h T h T h h T h T h h h− = − + −− −1 1 . Under Conditions A and D,  Lemma 

1 of Hansen (1992) indicates that  E ( ) ( )( ~ )Γ ΓT L L− 2  =  φo
2 T -1  uniformly in 0  ≤  L  ≤  T - 1 for some  

0 < φo < ∞ , so that max
L h h

T L L
∈ −

−
[ , ]

|~ ( ) ( )|Γ Γ   =  Op(T -1/ 2 ) for h  ≤ H(T)  =  o(T 1/ 2 ).  Thus, ~g gT h h−    

=  Op(T -1/2 ).  Furthermore, ( )~G G AT h h h−   ≤ max ~ ( ) ( ) ( )
k

Tj
h

hj k j k A jΓ Γ− − −=∑ 1   

≤ max
L h h

T L L
∈ −

−
[ , ]

|~ ( ) ( )|Γ Γ  | ( )|A jhj
h

=∑ 0   = Op(T -1/ 2 ), since the proof of Lemma 2 indicates  

that | Ah | = O(1).  Finally, we verify that ~GT h
−1  = Op(1), following essentially the same approach  

as in Hannan and Deistler (1988, pp.268-9).  Note that | Gh
−1 |  = O(1) by the proof of Lemma 2.   

Now | ~ |GTh
−1   ≤ | | | ~ |G G Gh Th h

− − −+ −1 1 1   ≤  | | | ~ || ~ ||G G G G Gh Th Th h h
− − −+ −1 1 1| .  Thus, we find that 

~GT h
−1   ≤ 

| |

| ~ || |

G

G G G
h

Th h h

−

−− −

1

11
   =  Op(1). 

 

Proof of Lemma 4:   

 Following the same approach used at the beginning of the proof of Lemma 2 , it can be seen that:  

(A3) | ~ |S Sh
ar − h

ar    =   max ( )~ , ~′ − ′ −



A A QT h h h T h hΣ Σ .   

Now it is useful to define ~ ~ ( ~ )C G A ATh T h T h h= − , so that: 

(A4) ( ) [ ]~ ~ ~ ~′ − ′ = ′ − + ′− − −A A Q C G G Q C G QTh h h Th Th h h Th h h
1 1 1 . 

Thus, since | Qh |  =  1, we find that: 
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(A5) ( ~ ) ~ ~ ~′ − ′ ≤ ′ − + ′− − −A A Q C G G C G QTh h h Th Th h Th h h
1 1 1  

 

Lemma A1 shows that ~ ′CTh  = Op(hT -1/ 2 ), while Lemma A2 shows that ~G GTh h
− −−1 1  = Op(hT -1/ 2 ). 

Thus, the product of these terms is Op(h2T -1 ) = op[ (h/T)1/2 ] for  h = o(T 1/ 3).  Lemma A3 shows that 
~ ′ −C GTh h

1  = Op[ (h/T)1/ 2 ].  Thus, using equation (A5), we find that  ( ~ )′ − ′A A QTh h h   = Op[ (h/T)1/ 2 ].  

Finally, Lemma A4 shows that ~Σ ΣT h h−   =  Op[T -1/ 2 ].  Substituting these results into equation (A3) 

completes the proof. 
 
Lemma A1:  Under Conditions A - D, ~'C Th  =  Op(hT -1/ 2 ) uniformly in 0 ≤ h(T) ≤ H(T) = O(T 1/ 3 ). 

     Proof:  Note that ~ ( ) ( ( ) ~ ( )) ' ( )c k j k j k A jTh T hj
h= − − −=∑ Γ Γ0  comprises the k-th N×N block of ~CTh . 

Just as in the proof of Lemma 3, we find that max
k

Thc k|~ ( )|   = Op(T -1/ 2 ).  Thus, | ~' | | $ ( )|C c kTh Thk
h= =∑ 1  

=  Op(hT -1/ 2 ) uniformly in h  ≤ H(T) = O(T 1/ 3 ). 
 
Lemma A2:   Under Conditions A - D, ~G GTh h

− −−1 1  = Op(hT -1/ 2 ) uniformly in 0 ≤ h(T) ≤ H(T) = O(T 1/ 

3). 
     Proof:   First, note that ~G GT h h−   ≤ max ~ ( ) ( )

k
Tj

h j k j kΓ Γ− − −=∑ 1   = Op(hT -1/ 2 ); furthermore, 

| |Gh
−1   = O(1) by the proof of Lemma 2, and ~GT h

−1  = Op(1) by the proof of Lemma 3.  Thus, since 

~ ~ ( ~ )G G G G G GTh h h Th h h
− − − −− = − −1 1 1 1 , we find | ~ | | ~ || ~ || |G G G G G GTh h h Th h h

− − − −− = −1 1 1 1   = Op[ hT -1/ 2 ]. 

 
Lemma A3:  Under Conditions A - D, ~ ′ −C G QTh h h

1  = Op[ (h/T)1/ 2 ] uniformly in 0≤h(T)≤H(T) = O(T 1/ 

3). 

     Proof:  We begin with a detailed proof for the scalar case, in which the intuition is not obscured by  

the additional notation required in the multivariate case.  In the scalar case, Qh   =  qh , the h×1 vector  

with all elements equal to unity.  Let Fh (i,j) denote the (i,j)th element of Gh
−1 , and let  zh  = Gh

−1 qh ,  

so that z j F j kh hk
h( ) ( , )= =∑ 1  .  Then z jh ( )  <  +∞ for all k=1, L  , h, because  | |Gh

−
∞ < + ∞1   

(i.e., the rows and columns of Gh
−1 are absolutely summable, as indicated in Lemma 2(a) above).   

Now we have: 
 

(A6) ( )~ ( )~ ( ) ( ) ~ ( ) ( ) ( )′ = = − − −
===
∑∑∑c z z j c j z j k j k j kT h h h T h h T
k

h
h

j

h

j

h
γ γ α

111
 

           ( )= − +










= −

−

= −
∑∑ ~ ( ) ( ) ( ) ( )

max( , )

min( , )
γ γ αT h h

j L

h h L

L h

h
L L z j j L

0 11
 

                ( )= −
= −
∑ b L LL T

L h

h ~ ( ) ( )γ γ
1

 

where | bL  |  <  +∞, since | zhj  | < +∞ and | ( )|α hj j=
∞∑ 0   < +∞.  Using the appropriate extension  
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of Bartlett’s (1946) result (cf. Priestley 1982, p. 326; Andrews 1991), we find that: 

 

(A7) ( )E ~ ′c zT h h
2

   = ( )b b k Lk L T T
L h

h

k h

h
Cov ~ ( ),~ ( )γ γ

= −= −
∑∑
11

  

 ≤ ( )b b
T

m m L k m L m k K t k L mk L
tmL h

h

k h

h 1

1
4

11
γ γ γ γ( ) ( ) ( ) ( ) sup , , ,+ − + + − +




















≥=−∞

∞

= −= −
∑∑∑   

 ≤ 





+ − + +

















=−=− =−∞

∞
∑∑ ∑O 1

T
j L k j L m

j jL h

h

k h

h

m
max ( ) max ( ) ( )γ γ γ  

   ( )+ 



 ≥=−∞

∞

=−∞

∞

=−∞

∞
∑∑∑O 1

1
4T

K t k L m
tmLK
sup , , ,  

 

where K4 is the fourth-order cumulant.  Now Condition A ensures that the autocovariances are absolutely 

summable, and Condition D ensures that the fourth-order cumulants are absolutely summable (cf. Lemma 1 

of Andrews 1991). Thus, we find that ( )E ~ ′c zT h h
2

 = O( h /T ), so that ~ ′ −c G qT h h h
1  = Op[ ( h /T )1/ 2 ]  

in the scalar case.   

 In the multivariate case, let the N×hN matrix zh = Gh
-1Qh with the kth N×N block denoted by zh(k) . 

As above, | zh(k) |∞  <  +∞, because | Gh
-1 |∞ <  +∞.  Now we have: 

 

(A8)  ( ) ( )( )~ ( ) ~ ' ( )′ = − − −−

==
∑∑C G Q z k j k j k A jTh h h h T h
j

h

k

h1

01
Γ Γ  

  

   ( ) ( )( )= + −
= −

−

= −
∑∑ z j L L L A jh T h

j L

h h l

L h

h
( ) ~ ' ( )

max( , )

min( , )
Γ Γ

0 11
 

 

By the properties of the vec operator (cf. Lütkepohl 1992, p.464), we find that: 
 

(A9)  ( ) ( ) ( )( )vec C G Q A j z j L vec L LTh h h h h
j L

h h L

L h

h
T

~ ( ) ( ) ~

max( , )

min( , )
′ = ⊗ +













−−

= −

−

= −
∑∑1

0 11
Γ Γ  

 

             ( ) ( )( )= −
= −
∑ b vec L LL T

L h

h
Γ Γ~

1
, 

where each N2×N2 matrix bL satisfies | | max| ( )| | ( )| .b z k A jL
k

h hj
h

∞ ∞ ∞=≤ < + ∞∑ 0    

Let wh(j) be the j-th element of ( )vec C G QTh h h
~ ′ −1 , and let bL (j) denote the j-th row of bL  ,  

so that w j b j vec L Lh L TL h
h( ) ( ) ( ( ) ~ ( ))= −= −∑ Γ Γ1  .  Then we obtain: 

 

(A10) ( ) ( ) ( )( ) ( ) ( )( )[ ]E Ew j b j vec K K vec L L b jh k T T
L h

h

K h

h
L

2

11
( ) ' ( ) ~ ~ ' ( ).= − −

= −= −
∑∑ Γ Γ Γ Γ  
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Now this formula can be expressed in terms of the autocovariances and fourth-order cumulants, using 

equation (3.3) of Hannan (1970, p. 209).  Then, given the absolute summability of the autocovariances  

and fourth-order cumulants (cf. Lemma 1 of Andrews 1991), we find that E[ wh(j)2 ]  = O[ (h/T)1/ 2 ]   
for all j = 1, L  ,N 2, so that ~ ′ −C G QTh h h

1    =  Op[ (h/T)1/ 2 ]. 

 

Lemma A4:  Under Conditions A - D, ~Σ ΣT h h−   = Op(T -1/ 2 ) uniformly in 0 ≤ h(T) ≤ H(T) = O(T 1/ 3). 

 From the definitions given in the text, it can be seen that ~ ~ ( ) ~ ~'Σ ΓT h T T h T hA g= −0  and that 

Σ Γh h hA g= −( ) '0 .   These identities, together with the orthogonality conditions ~ ~ ~G A gT h T h Th=   

and G A gh h h=  imply that: 

(A11)  ~ ( ~ ) ~ ( ~ )' 'Σ ΣT h h T h h T h Th hA A G A A− = − − −   

            ( ){ }+ − − − + −~ ( ) ( ) ( ~ ) ( ~ )' 'Γ ΓT h Th h h T h h hA g g A G G A0 0 2  

 In analysing the right-hand side of equation (A11), we will show that the first term vanishes  

at rate Op(h / T ); thus, this term is op(T -1/ 2 ) under the restriction that h ≤ H(T) = O(T 1/ 3 ).  We will  

also show that the terms enclosed in braces are Op(T -1/ 2 ).  In particular, these terms can be expressed  

as the sum of two components:  the first component vanishes at rate Op(T -1/ 2 | Σh - Σ | 1/ 2 ), while the  

second component vanishes at rate Op(T -1/ 2 ) and does not depend on h.  The particular convergence  

rates of these terms will be important in verifying the properties of BIC in Lemma 5.  Since all of these 

results are uniform in h for 0 ≤ h ≤ H(T) = O(T 1/ 3 ), the conclusion of the lemma follows. 

 Lemma 3 shows that ~A ATh h−  = Op(T -1/ 2 ); using this result, we also find that   
~ ' 'A AT h h−  = −=∑

~ ( ) ( )A j A jT h hj
h

1   = Op( hT -1/ 2 ).  Finally, ~ ~G G G GT h T h h h≤ − +   

= Op(1), since Condition A ensures that Gh  = O(1), and the proof of Lemma A2 indicates  

that ~G GT h h−   = Op( hT -1/ 2 )  = Op(1) under the restriction that h ≤ H(T) = O(T 1/ 3).   

Thus, the first term on the right-hand-side of equation (A11) is Op( h / T ) as previously indicated.   

 Now we analyse the terms of equation (A11) that are enclosed in braces.  As indicated in the 

proof of Lemma 3, Conditions A and D ensure that max |~ ( ) ( )|,...,j T T L L= −1 Γ Γ    = φoT -1/ 2 for some 0 < φo 

< ∞.   

Thus, ~ ( ) ( )Γ ΓT 0 0−  = Op(T -1/ 2 ).  In considering the second term enclosed in braces, we see that 

A g gh Th h' ( ~ )−  ≤  φoT -1/ 2 A jhj
h ( )=∑ 1 .  Thus, we find that: 

 

(A12) A g gh Th h' ( ~ )−    ≤  φoT -1/ 2 A jj ( )=
∞∑ 1    +  φoT -1/ 2  { }A j A j A jhj

h
j h( ) ( ) ( )− −= = +
∞∑ ∑1 1   

 Using the results of Lemma 1, we find that the first term in equation (A12) is Op(T -1/ 2 ), and does 

not depend on h.  Using the proof of Lemma 2, we find that the second term in equation (A12) converges  

at rate Op(T -1/ 2  | Σh - Σ | 1/ 2 ), uniformly in h for 0 ≤ h ≤ H(T) = O(T 1/ 3 ).  Following the same approach,  

it is straightforward to show that A G G Ah T h h h' ( ~ )−  can be expressed in terms of two components,  

where the first component is Op(T -1/ 2 ) and does not depend on h, and the second component is  



A-7 

  
 

Op(T -1/ 2  | Σh - Σ | 1/ 2 ), uniformly in h for 0 ≤ h ≤ H(T) = O(T 1/ 3 ). 

Proof of Lemma 5:  Using the results of Lemmas 2 and 4 concerning the behavior of  Σ Σh −  and 
~Σ ΣT h h− , the proof of Lemma 5 esentially follows the approach of Shibata (1980) and Hannan  

and Deistler (1988, pp.333-4).  In particular, let hB(T) be the VAR lag order that minimizes  

BIC(h; T )  =  log(det( ~ΣT h ))  +  hN2log(T)/T  subject to the constraint that hB(T) ≤ H(T) = Co T 1/(2 g + 1) 

for some 0 < Co < ∞ and 1 ≤ g < ∞.  Based on the proof of Lemma 4, we see that BIC(h;T )  =  log(det( Σh 

))  +  hN2log(T)/T  + Op(T -1/ 2 ).  Let λh = log(det( Σh )) - log(det( Σh+1 )).  If λh > 0, then there exists some 

Th such that BIC(h+1; T ) < BIC(h;T ) for all T ≥ Th .  Thus, if the limiting autocovariances correspond to a 

VAR of order p, as in Lemma 5(a), then limsup(hB(T)) ≥  p ; and if the limiting autocovariances correspond 

to a VAR(∞), as in Lemma 5(b-d), then hB(T) → ∞ as T → ∞.  Therefore, it is clear that  | Σh - Σ |  =  o(1).   

 Now we show that the behavior of hB(T) is effectively determined by h*(T ), where h*(T ) 

minimizes  LBIC( h; T )  =  trace N h T Th( ( )) log( ) /Σ Σ Σ− − +1 2 .  We follow Hannan (1970, p.158)  

in defining the matrix functions exp(·) and log(·):  for any Hermitian positive semi-definite matrix B,  

there is a unique Hermitian matrix C such that B = exp(C), where exp(C) is defined via the exponential 

series  B jj
j / !=
∞∑ 0 , and C = log(B).  Using these definitions, it can be shown that log(det(C)) = 

trace(log(C)) for any positive semi-definite matrix C  (cf. Hannan 1970, p159), and that log(I + C) → C  

as C → 0  (cf. Hannan and Kavalieris 1986).   

 Now the proof of Lemma 4 indicates that: 

(A13) ~ ( ) ( / ) ( ) ( )/ / /Σ Σ Σ Σ Σ Σ ΣT h h p p h pI h T T T= + − + + − +





− − −1 1 2 1 2 1 2O O O  

where I is the NxN identity matrix, and the last term in equation (A13) does not depend on the lag order h. 

(Conditions A and B ensure the invertibility of Σ.)  Thus, using the properties of the matrix functions 

described above, we find that: 

(A14) BIC(h; T )  =  LBIC( h; T )  + log(det( )) ( / ) ( ) ( )/ / /Σ Σ Σ+ + − +− −O O Op p h ph T T T1 2 1 2 1 2  

The second and last terms on the right-hand-side of equation (A14) do not depend on h.  The third term  

is clearly op[ h log(T) / T ].   

 Finally, we verify that the fourth term is op[LBIC( h; T )] uniformly in h for 0 ≤ h ≤ H(T) = O(T 1/ 3 

).  If the limiting autocovariances correspond to a VAR of order p, as in Lemma 5(a), this term vanishes, 

since Σh  =  Σ for h ≥  p .  If the limiting autocovariances correspond to a finite-order VARMA, as in 

Lemma 5(b), then | Σh  -  Σ |1/ 2  =  O[ ρo -h ]  =  O[ exp{- log(ρo) h }].  If  h = log(T) / [2(1+ε) log(ρo)] for 

some ε  >  0, then T -1/ 2 = exp{(1+ε) log(ρo) h}, and the fourth term is Op[ exp{-(2 + ε) log(ρo) h}] = 

Op[ Σ Σh o
h− −ρ ε ]   

= op[ LBIC( h; T ) ].  If  h = log(T) / [2(1-ε) log(ρo)] for some ε  ≥  0, then  exp{ - log(ρo) h } = T − −1 2 1/ ( )ε   

= O[T -1/2], and the fourth term is Op[ T -1 ] = op[ h log(T) / T ]  = op[ LBIC( h; T ) ].  If the limiting 

autocovariances do not correspond to a finite-order VARMA, as in Lemma 5(c-d), then | Σh  -  Σ |1/ 2   

= O[ h -r ].  If  h  = T 1 2 2/ ( )r+ ε  for ε  > 1/2, then T -1/ 2  = h− −r ε , and the fourth term is Op[ h− −2r ε ]  
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= op[ LBIC( h; T ) ].  If  h  = T 1 2 2/ ( )r+ ε  for ε  ≤ 1/2, then  h -(r+1)  =  T − + +( )/ ( )r r1 2 2ε   =  O[ T -1/ 2 ],  

and the fourth term is Op[ h / T ]  =  op[ h log(T)/ T]  = op[ LBIC( h; T ) ]. 

 Thus, BIC(h; T ) can be expressed as follows, uniformly in h for 0 ≤ h ≤ H(T) = O(T 1/ 3 ): 

(A15) BIC(h; T )  =  LBIC( h; T )  +  op[LBIC( h; T )] +  Co  + Op[ T -1/ 2 ] 

where the last two terms in equation (A15) do not depend on h.  Using this equation, the remainder  

of the proof is identical to that of Hannan and Deistler (1988, pp.333-4).   

 

Proof of Theorem 2:  Using equation (3.2), the results follow directly from Lemmas 2 through 5. 

 

Proof of Theorem 3:  The results of Lemmas 1 and 2 remain unchanged.  Now let the j-th sample 

autocovariance deviation d j vec j jT T( ) ( $ ( ) ~( ))= −Γ Γ , and let the weighted sum of sample 

autocovariance deviations D b j d jT h j h
h

T= =−∑ ' ( ) ( )  , where the elements of each N2×1  

non-random weighting vector b(j) are uniformly bounded for all  j ∈  [-∞, +∞].  Under Conditions  

A - E,  Andrews (1991) has shown that each element of dT  (j) converges to zero at rate Op(T -1/2 ),  

and that DT h  converges to zero at rate op[(h(T)/T)1/2] for  h(T) = o(T 1/2 ).   Since the proofs  

of Lemmas 3 through 5 have been expressed in terms of weighted sums of sample autocovariance  

deviations from the limiting autocovariances, these proofs can be immediately extended to the  

case of estimated regression residuals, in which the extra terms are asymptotically negligible,  

leading directly to the conclusions of Theorem 3.   

 


