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Abstract

This paper proposes an algorithm that finds model solutions at a particular point

in the state space by solving a simple system of equations. The key step is to charac-

terize future behavior with a Taylor series expansion of the current period’s behavior

around the contemporaneous values for the state variables. Since current decisions are

solved from the original model equations, the solution incorporates nonlinearities and

uncertainty. The algorithm is used to solve the model considered in Coeurdacier, Rey,

and Winant (2011), which is a challenging model because it has no steady state and

uncertainty is necessary to keep the model well behaved. We show that our algorithm

can generate accurate solutions even when the model series are quite volatile. The

solutions generated by the risky-steady-state algorithm proposed in Coeurdacier, Rey,

and Winant (2011), in contrast, is shown to be not accurate.
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1 Introduction

Carpe diem, quam minimum credula postero

(seize the present, trust tomorrow e’en as little as you may)

The difficulty in solving stochastic dynamic rational expectations models is that agents

are forward looking, which means that one cannot determine this period’s behavior unless

one knows next period’s behavior. It is standard practice to find a recursive solution,

which means that the model’s solution (as a function of the model’s state variables) are

the same each period. A model solution is then a set of functions with the following

property: If this set of functions is used to describe future model outcomes, then this

period’s model outcomes are described by the same set of functions. That is, a solution is

a fixed point in function space.1

By contrast, if future model outcomes are known (as a function of next period’s state

variables), then the problem is much simpler. If the model has n endogenous variables,

then finding the solution for a particular set of state variables would require solving a

system of n equations in n unknowns. That is, instead of finding a solution in function

space, one only has to find a solution in much smaller n-dimensional Euclidian space.

Building on this logic, Den Haan and De Wind (2012) propose to describe future behavior

using a simple perturbation approximation and solve for this period’s behavior from the

original model equations. Since the original model equations are used, this solution does

take into account nonlinearities, uncertainty, and any possible interaction between the

two. However, the choice to use a perturbation solution is ad hoc and describing future

behavior with a simple perturbation solution can be so inaccurate that this period’s choices

are inaccurate as well.

The algorithm that we propose eliminates the ad hoc choice of describing future be-

havior, but still finds the solution by solving a simple system of equations. The idea is the

following. Given future behavior, one can solve for this period’s behavior. If one can solve

for this period’s solution, then one can also solve for the derivatives of this period’s solu-

1The arguments of the functions are the model’s state variables.
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tion. The key step of our algorithm is to use these derivatives to construct a Taylor series

expansion, which is then used to describe next period’s behavior. More formally, we solve

for model outcomes in each period using a small system of equations that contains the orig-

inal model equations as well as some additional equations which ensure that next period’s

behavior is a Taylor series expansion of this period’s behavior, around this period’s state

variables. Since this period’s outcomes are solved using the original model equations, they

incorporate any possible nonlinearities, uncertainty, and interactions thereof. We refer

to our algorithm as the Exact-Today (ET) algorithm since this period’s outcomes are an

exact solution of the model equations and we only approximate next period’s outcomes.

In contrast to perturbation methods, our Taylor series expansion is only used to char-

acterize next period’s behavior in the model equations. Each period, actual behavior is

solved from the original model equations and incorporates any possible consequences of

nonlinearities and/or uncertainty. The algorithm’s advantage relative to projection meth-

ods is that it does not require constructing a grid. In more complex models, it may be

difficult to construct a grid such that all calculations make sense at all nodes on the grid.2

Another problem with grid-based methods is the curse of dimensionality, in which the

complexity of the problem increases exponentially with the number of state variables. In

contrast, the complexity of our algorithm only increases linearly with the number of state

variables.

There are already quite a few algorithms to solve stochastic dynamic models. To

document the usefulness of our algorithm, we implement it using a challenging model.

This is the model considered in Coeurdacier, Rey, and Winant (2011) (CRW). The model

is cast in partial equilibrium in which an agent faced with stochastic income and stochastic

returns decides how much to save and how much to consume. This type of model is often

used in macroeconomics to describe small open economies. The difficulty of this model lies

not in its size but in that uncertainty is key in keeping the model well behaved. There exist

no steady state and savings diverge absent a sufficient amount of uncertainty. Moreover,

2As discussed in section 2.3, this matters in practice. For example, particular combinations of state

variables may make no sense. The model would never end up at those points, but one may not be aware

of this when constructing the grid.
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as documented in this paper savings also diverge if uncertainty is too large.

CRW propose a modified perturbation method to solve this model, which entails taking

a second-order approximation of the Euler equation and finding a consistent perturbation

solution. We document that their solution is actually very inaccurate. By contrast, the

solution generated by our algorithm is shown to be very close to an accurate projection

algorithm that solves the problem using more than eight million nodes.3

Section 2 describes and motivates the algorithm. Section 3 describes the model of

Coeurdacier, Rey, and Winant (2011), which we use as a test case for our algorithm.

Section 4 documents the accuracy of our algorithm and the algorithm proposed in Coeur-

dacier, Rey, and Winant (2011).

2 The ET algorithm

In this section, we describe the method, which is followed by a short subsection describing

what one would actually have to program. The method’s merits are discussed in the last

subsection.

We focus on a class of models that can be represented by the following system of

equations:

0 = Et [f (xt−1, xt, xt+1, zt, zt+1)] , (1)

where xt contains the endogenous variables, zt the exogenous random variables, Et [·]

denotes the expectation operator, and f (·) is a known, typically nonlinear, function.4 To

simplify notation, we focus on the case when both xt and zt are scalars, but the method

easily generalizes to the multidimensional case. For the same reason, we assume that zt is

3Eight million nodes may seem overly prudent. However, the projection method using ”only” 441,000

actually performs worse than our proposed algorithm (!), and a very fine grid is therefore necessary in

order to adequately assess the accuracy of the various approaches.
4When solving stochastic dynamic models, this system of equations is typically the set of first-order

and equilibrium conditions. The variables could be transformations of the underlying economic variables

such as the logarithm.
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a simple AR(1) process. That is,

zt+1 = ρzt + εt+1, (2)

Et [εt+1] = 0. (3)

2.1 The method

The objective is to find a recursive solution to equation (1) of the following form:

xt = g (xt−1, zt) . (4)

Projection methods posit an approximating function, p (xt−1, zt; Φ), where Φ is a vector

containing the coefficients of the approximating function, and find Φ such that equation

(1) holds exactly, or approximately, on a grid for (xt−1, zt). Perturbation methods also

specify a particular functional form and choose the coefficients Φ such that the derivatives

of p (·; Φ) are consistent with the implicit solution of equation (1) at the steady state. By

contrast, our algorithm, does not restrict the solution of the current period’s decisions to

be of a particular functional form. Instead, it directly solves for xt one point at the time,

by solving a simple system of equations including equation (1). By doing so, it preserves

the nonlinearities in f (·) as well as any interaction between nonlinearities in f (·) and

uncertainty about εt+1.

The reader may think that it is not possible to directly solve for xt using equation

(1), because equation (1) clearly indicates that to solve for xt one needs to know how

xt+1 is determined. The underlying principle of ET that makes this possible is that the

relationship between xt+1 and next period’s state variables is imposed to be equal to an

approximation of the relationship between xt and this period’s state variables. When

solving for xt, this approximation for xt+1 is only used to describe the behavior at the

relevant points in the state space, namely the points where the economy could find itself

next period. Moreover, it is important to realize that the approximation we use to describe

next period’s behavior is not fixed, but depends on the period-t state variables. This

process is repeated each period, so that the actual outcome in period t is not given by
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this approximation, but by the solution to the ”ET-system” of equations that includes

equation (1).

The order of approximation for ET may vary depending on the desired degree of

accuracy. With first-order ET, the value of next period’s choice, xt+1, is approximated by

the following linear function:5

xt+1 ≈ h̃ (xt, zt+1; Φt) = φ0,t + φx,t (xt − x̃t) + φz,t (zt+1 − z̃t+1) , (5)

where Φt contains the coefficients of the approximation. That is,6

Φt = Φ (xt−1, zt) ≡ [x̃t, z̃t+1, φ0,t, φx,t, φz,t+1] . (6)

The five elements of Φt are functions of the state variables, xt−1 and zt, and are, thus, time

varying. For the ET algorithm it does not matter whether xt−1 and zt are observations

in a simulated time series or an arbitrary point in the state space. Therefore, we focus on

the recursive representation of the system of equations, that is,

0 = E [f (x−1, x, x+1, z, z+1)] , (7a)

z+1 = ρz + ε+1, (7b)

E [ε+1] = 0. (7c)

Substituting the approximation for x+1 given by equation (5) into equation (7a) gives

0 = E
[
f
(
x−1, x, h̃ (x, z+1; Φ (x−1, z)) , z, z+1

)]
= E

[
f
(
x−1, x, h̃ (x, ρz + ε+1; Φ (x−1, z)) , z, ρz + ε+1

)]
= E [F (x−1, x, z, ε+1; Φ (x−1, z))] . (8)

Since ε+1 is integrated out, equation (8) implicitly defines x as a function of x−1 and

z for a given Φ (x−1, z). We denote this function by h (x−1, z). Thus,

0 = E [F (x−1, h (x−1, z) , z, ε+1; Φ (x−1, z))] . (9)

5Higher-order ET is discussed in appendix D.
6It is important to distinguish between xt and x̃t and between zt+1 and z̃t+1. xt and zt+1 are next

period’s state variables whereas x̃t and z̃t+1 are coefficients of h̃ (·).
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The idea of ET is to choose Φ (x−1, z) such that the function that determines x+1,

i.e., h̃ (x, z+1; Φ (x−1, z)), is the Taylor series expansion of the (implicit) function that

determines this period’s choice, h (x−1, z), around this period’s state variables. The ap-

proximation h̃ (x, z+1; Φ (x−1, z)) will be accurate if next period’s state variables are not

that different from this period’s state variables. This is a much weaker condition than

the one that will ensure accuracy of the perturbation solution, which is that both this

period’s and next period’s state variables are close enough to their steady state values

and uncertainty is close to zero. Moreover, the Taylor series approximation, plays a less

important role in the ET algorithm relative to perturbation methods, since it is only used

to describe possible outcomes for next period’s behavior and not to solve for each period’s

actual outcomes.

Since h̃ (x, z+1; Φ (x−1, z)) is a Taylor series expansion of h (·) around x−1 and z, it

follows that

x̃ = x−1, (10a)

z̃+1 = z. (10b)

That is, x̃ and z̃+1 are equal to x−1 and z respectively. Of course, the values of the

coefficients φ0, φx, and φz also depend on x−1 and z. To understand how these coefficients

are determined, notice that

h̃ (x̃, z̃; Φ (x−1, z)) = φ0, (11a)

∂h̃ (x, z+1; Φ (x−1, z))

∂x
= φx, (11b)

∂h̃ (x, z+1; Φ (x−1, z))

∂z+1
= φz. (11c)

Differentiating equation (9) with respect to x−1 and z, gives

0 = E

 ∂F (x−1,x,z,ε+1;Φ(x−1,z))
∂x−1

+∂F (x−1,x,z,ε+1;Φ(x−1,z))
∂x

∂h(x−1,z)
∂x−1

 , (12a)

0 = E

 ∂F (x−1,x,z,ε+1;Φ(x−1,z))
∂z

+∂F (x−1,x,z,ε+1;Φ(x−1,z))
∂x

∂h(x−1,z)
∂z

 . (12b)
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From this equation, we obtain expressions for ∂h (x−1, z) /∂x−1 and ∂h (x−1, z) /∂z. From

now on, we suppress the dependence of Φ (x−1, z) on x−1 and z, although this dependence

is a key feature of ET. The key approximation step of ET is to assume that the coefficients

of the approximation for next period’s choices are set as follows:

φ0 = h̃ (x̃, z̃; Φ) = h (x−1, z) , (13a)

φx =
∂h̃ (x, z+1; Φ)

∂x

∣∣∣∣∣ =
∂h (x̂−1, ẑ)

∂x̂−1

∣∣∣∣x̂−1=x−1,
ẑ=z

, (13b)

φz =
∂h̃ (x, z+1; Φ)

∂z+1

∣∣∣∣∣ =
∂h (x̂−1, ẑ)

∂ẑ

∣∣∣∣x̂−1=x−1,
ẑ=z

. (13c)

In words, the function determining next period’s choice, x+1 = h̃ (x, z+1; Φ), is equal to a

local approximation of this period’s choice, x = h (x−1, z), around this period’s values of

the state variables. Equation (13a) immediately implies that φ0 = x. This leaves us with

the following system of three equations to solve for x, φx, and φz:
7

0 = E [F (x−1, x, z, ε+1; Φ)] , (14a)

0 = E
[
∂F (x−1, x, z, ε+1; Φ)

∂x−1
+
∂F (x−1, x, z, ε+1; Φ)

∂x
φx

]
, (14b)

0 = E
[
∂F (x−1, x, z, ε+1; Φ)

∂z
+
∂F (x−1, x, z, ε+1; Φ)

∂x
φz

]
. (14c)

Lastly, we have to deal with the expectations operator. If ε+1 has discrete support, then

the expectations operator can be replaced by a sum of the outcomes corresponding to the

possible realizations of εj multiplied with the associated weights, πj , with j ∈ {1, · · · , J}.

If ε+1 has continuous support, then one can use a numerical integration procedure, which

boils down to doing the same. For example, if ε+1 has a Normal distribution with mean

zero and standard deviation equal to σ, then using Gauss-Hermite quadrature implies that

εj =
√

2σζj , and (15)

pj =
ωj√
π
, (16)

where the ζj ’s and the ωj ’s are the Gauss-Hermite nodes and weights, respectively.8

7Although x̃ = x−1 and z̃+1 = zt, these variables should be treated as constant coefficients when

differentiating F (x−1, x, z, ε+1; Φ).
8Intuitively, one can think of the

√
2σζj terms as the possibly outcomes of ε+1 and of the ωj/

√
π terms as
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Relationship to Den Haan and De Wind (2012) Den Haan and De Wind (2012)

propose to set h̃ (x, z+1; Φ) equal to a standard perturbation solution. Equation (8) can

then also be used to solve for x for given values of x−1 and z. In this approach, the

value of Φ is time invariant and independent of x−1 and z. The solution for x would

still take into account the nonlinearity of f (·) and the uncertainty about ε+1. However,

the standard perturbation solution may not be a reliable representation of the solution

for x+1, because it is a local approximation around the steady state values of the state

variables when there is no uncertainty. By contrast, ET sets the choice for x+1 equal to

the behavior according to a local approximation around this period’s state variables and

uncertainty is not reduced to zero.9

2.2 What actually needs to be programmed

The key step is to construct a function that defines the three error terms associated with

equation (14) as a function of the arguments, x, φx, and φz for given values of x−1 and z.

Those error terms are given by
e1

e2

e3

 =


∑J

j=1 F (x−1, x, z, εj ; Φ) pj∑J
j=1

(
∂F (x−1,x,z,εj ;Φ)

∂x−1
+

∂F (x−1,x,z,εj ;Φ)
∂x φx

)
pj∑J

j=1

(
∂F (x−1,x,z,εj ;Φ)

∂z +
∂F (x−1,x,z,εj ;Φ)

∂x φz

)
pj

 , (17)

the associated probabilities. Simple subroutines exist to generate the Gauss-Hermite quadrature nodes and

weights. Numerical integration techniques are very powerful. For example, if ε+1 is distributed according

to a Normal distribution, and one wants to calculate E [F (ε+1)], then the Gauss-Hermite quadrature

approximation with J nodes gives the exact for all (2J − 1)th-order polynomials, and an accurate answer

when F (·) is well approximated by a (2J − 1)th order polynomial.
9The procedure used in Den Haan and De Wind (2012) improves substantially upon standard per-

turbation solutions for some models. However, it is shown to be only slightly better than the regular

perturbation solution – and still far from accurate – for others.
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whereas before

F (x−1, x, z, εj ; Φ) = f
(
x−1, x, h̃ (x, ρz + εj ; Φ) , z, ρz + εj

)
, (18)

h̃ (x, ρz + εj ; Φ) = φ0 + φx (x− x̃) + φz (z+1 − z̃) , (19)

and

Φ = [x̃, z̃, φ0, φx, φz] = [x−1, z, x, φx, φz]. (20)

Defining these error terms requires taking derivatives. As shown in appendices D and F,

this is a very simple programming step if one has access to a symbolic toolbox even if one

considers higher-order approximations. For quite a few problems this could also be done

by hand.

The next and final step is to use an equation solver to find the values of x, φx, and φz

that set the three error terms equal to zero for given values of x−1 and z.

2.3 Merits of the ET algorithm

The ET algorithm shares with projection methods the property that the numerical solution

incorporates the uncertainty and nonlinearity underlying the original system of equations

without modifying f (·) and with either no modification of the expectations operator (in

case ε+1 has discrete support) or with a minor modification (in case εt has continuous

support). This is even true for first-order ET, since the period-t choice variables are

always solved from the original nonlinear set of first-order conditions. The approximation

aspect of the ET solution only affects the characterization of next period’s policy functions.

Moreover, the derivatives of the Taylor-series expansion used to characterize next period’s

behavior vary with the value of this period’s state variables. By contrast, the traditional

perturbation method characterizes this period’s behavior with a particular fixed Taylor

series expansion using the state variables and the amount of uncertainty as its arguments.

The derivatives used in this Taylor-series approximation correspond to the derivatives at

the steady state. This means that the accuracy of the standard perturbation solution is

only guaranteed if the state variables are close to their steady state values and the model’s

volatility parameters are close to zero. Higher-order perturbation does incorporate the
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effect of uncertainty, but imposes that the effect of uncertainty on model outcomes is

equal to an extrapolation of the effect of uncertainty on behavior at a situation when

there is no uncertainty to begin with.

Projection methods, on the other hand, solve a much larger set of simultaneous equa-

tions, namely the model equations at all grid points.10 By contrast, ET can solve for the

choices at a particular point in the state space without having to solve for the solution

at other points in the state space. For the application considered in this paper, which is

quite challenging, the projections algorithm has to solve a simultaneous system of more

than eight million equations (one for each node), whereas second-order ET needs to solve a

system of ten equations and ten unknowns.11 ET can do so because it focuses on behavior

at the relevant points in the state space, namely those where the economy could be in the

next period, and it does so by imposing that next period’s choices are determined by a

Taylor-series expansion of this period’s choices. It is true that ET has to solve this system

many times, but it is a fixed system of equations, so it only has to be defined once.

It is important to realize that the comparison of standard projection methods and

ET is not only an issue of comparing the speed of solving a large system of equations

once versus solving a smaller system of equations many times. There are two potential

advantages of ET. The first is that ET is not subject to the curse of dimensionality the

way it affects regular grid-based methods. Whereas the number of elements of a regular

grid increases exponentially with the number of state variables, the number of unknowns

the ET algorithm has to solve for increases at a slower rate. In particular, it increases at

a linear rate if a first-order approximation is used to describe next period’s behavior.12 A

second advantage of ET is related to the points considered in calculating the numerical

approximation. To apply standard projection methods, one has to construct a grid and

the algorithm must be able to find a sensible solution at all grid points. But there may

be points in the state space where some calculations are not well defined.13 This is not a

10If the number of nodes exceeds the number of coefficients, then a minimization routine would be used.
11First-order ET requires solving a system of three equations in three unknowns.
12Recall that even the first-order ET solution takes into account the full nonlinearity and uncertainty of

the underlying system.
13One possibility is that the model simply has no solution at these nodes. Another possibility is that
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problem if the economy never reaches those points. Unfortunately, when constructing the

grid one typically would not know which points in the state space one has to exclude for

this reason. This is a relevant problem in practice and has motivated some researchers to

develop methods that – like ET – use simulated time paths instead of pre-specified grids.14

3 The model of Coeurdacier, Rey, and Winant (CRW)

We use the algorithm to solve the model considered in Coeurdacier, Rey, and Winant

(2011). This is a challenging model to solve, since the model has no steady state and is

not well defined when there is no or not a sufficient amount of uncertainty.15 Moreover, as

discussed below, the model can also generate non-stationary behavior if there is too much

uncertainty and there are some important nonlinearities.

In the CRW model, an infinitely-lived agent decides how much to consume, ct, and

how much funds to invest and carry over to the next period, wt. Both the agent’s income,

yt, and the rate of return, rt, are exogenous stochastic processes. The solution to the

agent’s problem is characterized by the following set of equations:

c−γt = βEt
[
c−γt+1rt+1

]
, (21)

ct + wt = yt + wt−1rt, (22)

yt = (1− ρy) y + ρyyt−1 + εy,t, εy,t ∼ N
(
0, σ2

y

)
, (23)

rt = (1− ρr) r + ρrrt−1 + εr,t, εr,t ∼ N
(
0, σ2

r

)
. (24)

there is no solution for the particular functional form chosen for the approximation. But even if neither

is the case, then it still may be the case that some sets of state variables are fatally problematic at some

point in the process of finding the numerical solution.
14Simulation-projection methods are not new. An example is the Parameterized Expectations Algorithm

of Den Haan and Marcet (1990). As pointed out in Judd (1992) and documented in Den Haan (1995),

those earlier simulation approaches can be quite inefficient in that accuracy of the projection’s part of

the algorithm, i.e., the regression phase, requires a very large number of observations. Judd, Maliar, and

Maliar (2011) develop a simulation-based method with a more efficient projection’s element.
15Standard projection methods can be used to solve this model, but it is not a trivial problem for these

methods either. Since uncertainty is essential, one cannot follow standard practice of first solving a model

with little uncertainty and then gradually moving to the case with the desired levels of uncertainty.
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If there would be no uncertainty, the Euler equation reduces to

ct+1 = (βr)1/γ ct, (25)

which implies that consumption would either increase without bound or go to zero unless

β = 1/r. That is, there is no steady-state solution when σy = σr = 0.16 In the CRW

model, there are no constraints on wt and short positions of any size are allowed. Thus,

uncertainty is key for the ability of the model to generate a stationary solution.17

Natural borrowing constraint. For the projections algorithm to work smoothly, we

found it necessary to impose the natural borrowing constraint. That is, the maximum

amount that an agent can borrow is such that their income will always be enough to cover

interest payments, even in the worst possible circumstances. In particular, when solving

for the projections solution, we impose that

w ≥ − ylow

rhigh − 1
, (26)

where ylow is the lowest possible value for yt and rhigh the highest possible value for rt.
18

For the parameters considered, this constraint turns out to be never binding, even in the

very long simulations considered. As discussed below, this does not imply that it does

not affect the behavior of the agent’s choices. Neither the CRW algorithm nor the ET

algorithm impose the natural borrowing constraint. Nevertheless, as discussed below, the

ET solution is characterized by nonlinear behavior that resembles the nonlinearity induced

by the natural borrowing constraint.

Parameter values. The parameter values are reported in table 1. The two key param-

eters are the standard deviations of the innovations to output and the rate of return. As

16When β = 1/r, then there would be a steady state with ct = y + (r − 1)w0, but any amount of

uncertainty would cause the solution to be non-stationary.
17In appendix A, we provide some intuition for this statement. A more formal analysis of the model’s

properties can be found in Chamberlain and Wilson (2000).
18We set ylow equal to y minus four standard deviations of the unconditional standard deviation of yt

and we set rhigh equal to r plus four standard deviations of the unconditional standard deviation of rt.
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documented below, the model variables are quite volatile at the chosen values. Neverthe-

less, the values for σr and σy used here are lower than those chosen in Coeurdacier, Rey,

and Winant (2011). We do not use the original CRW values for our comparison, because

our accurate projection algorithm indicates that the model solution is not well behaved at

those values. As documented in appendix E, it displays ”escape dynamics”. That is, the

simulated time paths for wealth will occasionally – but for sustained time periods – diverge

to extremely high values.19 The CRW method imposes stationarity even when it is not

correct to do so. Although less restrictive, the ET algorithm also does not seem capable of

capturing such explosive behavior.20 Therefore, we chose more moderate volatility levels

at which the generated series do not display such divergent behavior. The case with the

original CRW parameter values is discussed in more detail in appendix E. We follow CRW

and choose the value of r such that the risky-steady-state value for wealth is equal to 0.21

4 Evaluation of solution methods

In this section, we compare the solutions obtained with the CRW and ET algorithms with

an accurate projections-method solution.22 The CRW procedure is identical to the one

used in Coeurdacier, Rey, and Winant (2011). The procedure consist of deriving a second-

order approximation of the Euler equation and a perturbation solution that are consistent

with each other.23 To implement the ET procedure, we use a second-order approximation

19Our projection method imposes an upper bound on wealth. Without imposing such an upper bound,

the solution diverges to infinity. Outside the (finite) grid, solutions can be obtained by extrapolation, but

these cannot be relied on to be accurate. Our experience indicates that the simulated wealth series reach

this upper bound even when it is set at extremely high values for a sufficiently long sample. The stochastic

innovations for rt and yt have a normal distribution and could in principle take on extremely high values.

This is not the cause of the divergence, since the same explosive behavior is observed when the values of

rt and yt are restricted to be in a bounded set.
20With the second-order version, the method fails to find a solution at some point during the simulation.

It might still be possible that a higher-order version of the algorithm would be successful.
21Although, the original system of equations does not have a steady state, the second-order approxima-

tion used by CRW does have a steady state, which is referred to as the risky steady state.
22The accuracy of the projections-method solution is documented in appendix B.
23A description of the CRW procedure is given in appendix C.
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to describe next period’s choices.24 The reason we do not use a first-order approximation

is that the ET system of equations does not have a solution at some points in the sample

when only a first-order approximation is used.

Policy functions. Figure 1 plots the policy functions for the change in wealth, w−w−1,

as a function of beginning of period wealth, w−1, for different values of the realized rate

of return and one particular value of income.25 The top panel displays the results for

both the ET and the accurate projection solution. The solutions of these two algorithms

are very close for most values of w−1. The only noticeable differences occur at values of

beginning-of-period wealth close the natural borrowing constraint for higher values of the

realized rate of return. The projection solution indicates that w − w−1 gets less negative

rapidly as w−1 is close to the natural borrowing constraint. The ET solution only uses

local information and it does not impose the natural borrowing constraint at all. It is,

therefore, remarkable that the ET solution displays a similar nonlinearity close to the

natural borrowing constraint.26

The figure documents another – more important – nonlinearity: The slope of the policy

function for w − w−1 as a function of w−1 depends on the level of this period’s realized

rate of return, r. The slope is positive at high rates of return and negative at low rates

of return. The level of r does not only affect this period’s resources through rw−1, it also

affects the expected rate of return. Another way to think of the nonlinearity associated

with r is the following: If r increases then w − w−1 increases for higher levels of wealth

and decreases for lower levels of beginning-of-period wealth, w−1.27

The bottom panel displays the results for the CRW solution. Although the CRW

24Details of the implementation of the ET algorithm are given in appendix D.
25The results are very similar for other income values.
26Although ET does not impose the natural borrowing constraint, it does avoid choosing wealth levels

which could imply very low consumption levels next period, which becomes more likely at very low wealth

levels.
27If r increases, then a saver will have more funds in the current period and a borrower will have less

resources. The realization of r also affects the expected return. The associated income effect also differs

for savers and lenders.
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solution is quite accurate for the middle value of r it predicts that ∂w/∂w−1 does not

depend on r. As discussed above, even the sign of ∂w/∂w−1 depends on the level of r

according to the accurate projection solution (and the ET solution).

Figure 2 repeats the exercise for the consumption policy function. The ET policy

function accurately captures that the slope of the consumption function depends on the

level of r. The CRW policy function does not. Moreover, it overpredicts the consumption

choice at high rates or return and underpredicts the consumption choice at low rates of

return, especially at lower wealth levels. The nonlinearity associated with the natural

borrowing constraint is less pronounced in the consumption policy than in the wealth

policy function.

Simulated time paths. Next we compare simulated time paths. These will reveal

possible differences and similarities in exactly those parts of the state space that matter

for model properties. The model variables are quite persistent, so we use a long simulation

of 80,000 observations. Panels A and B of figure 3 plot the generated values for wealth

and consumption, respectively. The figure shows that the ET solutions for consumption

and wealth follow the accurate projection solutions closely. That is clearly not the case

for the CRW solution. These figures also document that the series are quite volatile even

though the chosen standard deviations are less than those used in Coeurdacier, Rey, and

Winant (2011).28

Figures 4 and 5 display wealth and consumption time paths for four shorter samples

taken from the full sample. These figures show in greater detail that the behavior of the

CRW solution can be quite different from the accurate projection solution. For example,

in the top right panel of figure 4, the wealth series of all three algorithms display a similar

downward trend in the beginning of the sample. While this downward trend continues

according to the projection and ET solutions, the CRW solution displays a remarkable

recovery. In the top left panel, the projection and ET solutions display a sharp increase

which is not present in the perturbation solution.

28To put the volatility in perspective, note that the mean income level is equal to 1.
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Comovement of CRW & ET time paths with accurate projection solution.

Table 2 reports how close the ET and CRW solutions are to the accurate projection

solution using average and maximum absolute deviations as well as correlation coefficients.

Whereas the correlation between the time series generated with the ET algorithm and

those generated by the accurate projection solution are virtually equal to 1, they are

considerably lower for the CRW series. For example, the correlation between the CRW

wealth series and the projection wealth series is only 0.729. Despite the almost perfect

correlation, the ET data are not exactly equal to their projection equivalent. In particular,

there is an average absolute difference of 0.83% for wealth and 0.21% for consumption.

These compare very favorable to the outcomes for CRW,which are 52.3% and 13%. The

results are similar for the maximum differences from the accurate projection solution. For

the ET data, the maximum differences are 3.62% for wealth and 0.92% for consumption,

whereas the corresponding numbers are 268.2% and 68.4% for the CRW solution.

Comparison of generated moments. Tables 3 and 4 report moments according to

the three different solutions for the generated wealth and consumption data, respectively.

The statistics based on the projection and the ET algorithm are very close to each other.

This is not true for the CRW statistics. In particular, the data generated by the CRW

algorithm are substantially less volatile; the standard deviation of wealth is only 53% of

the projection analogue and the standard deviation of consumption is only 54% of the

projection analogue.
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A The role of uncertainty for stationarity

The following second-order approximation of the Euler equation provides some intuition

for the result that the solutions for ct and wt could be stationary because of uncertainty.

c−γt ≈ βEt [rt+1]Et [ct+1]−γ

+ (27)

γ (γ + 1)βEt [rt+1]Et [ct+1]−γ−2 Vt (ct+1)

−βγEt [ct+1]−γ−1 Ct (ct+1, rt+1) ,

where

Vt (ct+1) ≡ Et
[
(ct+1 − Et [ct+1])2

]
, (28)

Ct (ct+1, rt+1) ≡ Et [(ct+1 − Et [ct+1]) (rt+1 − Et [rt+1])] . (29)

First, consider the case when the rate of return is constant, that is, εr,t = 0 ∀t. This implies

that Ct (ct+1, rt+1) = 0. Also, suppose that the discount rate exceeds the average rate of

return, which – by itself – would induce agents to run down their wealth and then take on

debt. Uncertainty increases the right-hand side of the Euler equation and dampens the

desire of agents to consume more in this period than the next and to reduce wealth levels.

Would this mean that the inequality is reversed and that it is optimal to save a lot and

increase future consumption levels. The answer is no. The magnitude of the uncertainty

effect depends on the value of Et [ct+1]−γ−2. Consequently, expected consumption is high

enough and Et [ct+1]−γ−2 low enough, then the uncertainty effect is less important.

If the covariance between unexpected changes in ct+1 and rt+1 is negative—that is,

bonds act as a hedge—then the covariance has a similar dampening role. However, if this

covariance is positive, then stochastic rates of return would reinforce the desire of the

agent to keep on reducing consumption over time.

B Accuracy of the projections solution

In this section, we document that the solution generated by the projection algorithm is

accurate. It is important to establish this, since the projection solution is used as the
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benchmark against which the other solutions are compared.

The projection solution uses 8,405,000 grid points; 41 for both r and y and 5,000 for

w−1. We use the Dynamic Euler-equation accuracy test, described in Den Haan (2010).

The test compares the generated time series with the series that are obtained by explicitly

solving the first-order conditions, using the approximation only to calculate next period’s

wealth choice.29 This test is more stringent than the standard Euler-equation accuracy

test, since it would detect if small errors accumulate in a simulation. Figure 7 documents

that the two series are very close to each other. Table 5 reports some key statistics. Both

the figure and the table indicate that the solution is very accurate.

C The CRW procedure

The CRW procedure starts out with the second-order approximation of the Euler equation,

which is given by

c−γt = β


Et [rt+1]Et [ct+1]−γ

+γ (γ + 1)βEt [rt+1]Et [ct+1]−γ−2 Vt (ct+1)

−βγEt [ct+1]−γ−1 Ct (ct+1, rt+1)

 , (30)

where Vt (ct+1) and Ct (ct+1, rt+1) are the variance of ct+1 and the covariance of ct+1

and rt+1, respectively, both conditional on period-t information. In addition, the budget

constraint, and the laws of motion for yt and rt are needed. That is

ct + wt = yt + wt−1rt, (31)

yt = (1− ρy) y + ρyyt−1 + εy,t, εy,t ∼ N
(
0, σ2

y

)
, (32a)

rt = (1− ρr) r + ρrrt−1 + εr,t, εr,t ∼ N
(
0, σ2

r

)
. (32b)

29In particular, the numerical solution is not used to determine the amount of wealth carried over into

the next period.
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The objective of the CRW procedure is to find an approximation to the savings decision

that is linear in levels. The latter is given by

wt = w +Wwŵt−1 +Wyŷt +Wrr̂t. (33)

Using the budget constraint and this linear approximation for wt, one can derive the

second-order terms in the approximated Euler equation. The results are as follows:

Vt (ct+1) =
(

(1−Wy)
2 σ2

y

)
+
(
W 2
r + w2

t − 2wtWr

)
σ2
r , and (34)

Ct (ct+1, rt+1) = (wt −Wr)σ
2
r . (35)

The idea of the CRW algorithm is to find a first-order perturbation solution to the

system of equations consisting of equations (30), (31), (32), (34), and (35), which is

consistent with the definitions of Vt (ct+1) and Ct(ct+1, rt+1) given in equations (34) and

(35). One could find the values for w, Wr, Wy using an equation solver or with the

following iterative procedure. Start with initial values for Wr and Wy and denote these by

W̃r and W̃y. If we use these values to calculate Vt (ct+1) and Ct(ct+1, rt+1) and substitute

the expressions for Vt (ct+1) and Ct(ct+1, rt+1) into equation (30), we get the CRW system

of equations:

c−γt

= (36)

βEt [rt+1]Et [ct+1]−γ

+γ (γ + 1)βEt [rt+1]Et [ct+1]−γ−2


((

1− W̃y

)2
σ2
y

)
+
(
W̃ 2
r + w2

t − 2wtW̃r

)
σ2
r


−βγEt [ct+1]−γ−1

(
wt − W̃r

)
σ2
r


,

ct + wt = yt + rrwt−1, (37)

yt = (1− ρy) y + ρyyt−1 + εy,t, εy,t ∼ N
(
0, σ2

y

)
, (38)

rt = (1− ρr) r + ρrrt−1 + εr,t, εr,t ∼ N
(
0, σ2

r

)
. (39)
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For given values of W̃r and W̃y, this system of equations has a steady state and regular

perturbation techniques can be used to calculate w̃, Wr, and Wy. The values for Wr and

Wy can then be used to update equation (36). This process is continued until convergence.

D Details of the ET procedure

In this section, we give detailed information about the implementation of the ET algorithm.

The discussion follows the Matlab program closely.30 To increase transparency, we replace

some of the names used in the program with more informative mathematical symbols.31

Define key variables and preliminaries

• The Gauss-Hermite nodes and weights (scaled by
√
π) are stored in the (N × 1)

vectors X and P , respectively. We assume that the number of nodes is the same for

both random variables.

• The following list of variables are declared to be symbolic variables: w, r, w−1, y, r̃,

w̃, ỹ, φ0, φr, φw, φy, φrr, φww, φyy, φrw, φry, φwy. The last six are only used when

implementing second-order ET.

• Define next period’s realizations of the two random variables, that is, r+1 and y+1,

as functions of the possible outcomes, i.e., the Gauss-Hermite nodes:

r+1 = @ (X) r+1 = (1− ρr) r + ρrr +
√

2σrX, (40)

y+1 = @ (X) y+1 = (1− ρy) ỹ + ρyy +
√

2σyX. (41)

Note that r+1 and y+1 are not just functions of X, but also functions of r and y.

30The program is availabe at www.wouterdenhaan.com/software.htm.
31In particular, lhs in the code stands for L, i.e., the left-hand side of the Euler equation; wlag in the code

stands for wealth chosen previous period, that is, w−1; wconstm stands for φ0; rm stands for r̃; wm stands

for w̃; ym stands for ỹ; phi i stands for φi with i ∈{r,w,y}; and phi ij stands for φi,j with i, j ∈{r,w,y};

eq stands for Q (·), the Euler-equation error term; eq x stands for ∂Q/∂x with x ∈{W,r,w,y}; eq xz stands

for ∂Q2/∂2xz with x, z ∈{W,r,w,y}. In both the first and second order derivatives, the modifier w stands

for previous period wealth, w−1, and the modifier W stands for this period wealth, w.
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• Define the left-hand side of the Euler equation, that is, c−γ :

L = (y + rw−1 − w)−γ . (42)

• The key variable is the Euler equation error, which is equal to

Q0 (w,w−1, r, y; Φ)

= (43)

−1 +
β

L

N∑
i=1

N∑
j=1

r+1 (X)

 y+1 (X (j)) + r+1 (X (i))w

−h̃ (r+1, w, y+1; Φ)

−γ

P (i)P (j) ,

where Φ contains all the coefficients of the approximating functional form. In the

program, Q (·) is calculated using a double ”for loop”.

First-order ET. When using first-order ET, the function h̃ (·) is given by

h̃ (r+1, w, y+1; Φ) = φ0 + φr (r+1 (X)− r̃) + φw (w − w̃) + φy (y+1 (X)− ỹ) (44)

where

Φ = [φ0, φr, φw, φy, r̃, w̃, ỹ] . (45)

A key aspect of ET is that all elements of Φ depend on the current values of r, w−1, and

y.

The model says that the error term defined in equation (43) should be equal to zero

for all r, w−1, and y, that is,

Q0 (w,w−1, r, y; Φ) = 0. (46)

Differentiating this equation with respect to r, w−1, and y gives

∂Q0

∂w

∂w

∂r
+
∂Q0

∂r
= 0, (47a)

∂Q0

∂w

∂w

∂w−1
+

∂Q0

∂w−1
= 0, (47b)

∂Q0

∂w

∂w

∂y
+
∂Q0

∂y
= 0, (47c)
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With a symbolic toolbox, one defines Q0 as a function, exactly as it is defined in

equation (43). Next, one obtains the partial derivatives as functions of w, w−1, r, and

y by using the symbolic toolbox’ differentiation command.32 After the derivatives have

been calculated, one would impose that

φ0 = w, (48)

r̃ = r, (49)

w̃ = w−1, (50)

ỹ = y. (51)

That is, the Taylor series expansion to characterize next period’s choice is around

today’s state variables and the function value at those outcomes is, of course, equal to this

period’s choice. The derivatives of this Taylor series expansion are equal to the derivatives

of this period’s choice. That is,

φr =
∂w

∂r
, (52a)

φw =
∂w

∂w−1
. (52b)

φy =
∂w

∂y
. (52c)

After these substitutions, we get the following system of four equations in the four un-

knowns – w, φr, φw, and φy – for given values of r, w−1, and y:33

0 = Q0

(
w,w−1, r, y; Φ̃

)
, (53a)

0 = Qr

(
w,w−1, r, y; Φ̃

)
, (53b)

0 = Qw

(
w,w−1, r, y; Φ̃

)
, (53c)

0 = Qy

(
w,w−1, r, y; Φ̃

)
, (53d)

32In Matlab, Q r=diff(Q 0,r)generates the derivative of Q 0 with respect to r.
33For this system of equations, the nonlinear-equation solver is keen to set φw to values close to r and

φy to values close to 1. Since r > 1, this implies an explosive solution. It is easy to show that φw = r and

φy = 1 are exact solutions to equations (53c) and (53d) when σr = 0. To avoid the nonlinear-equation

solver choosing or moving towards this possibility, we divide equation (53c) by r− φw and equation (53d)

by 1− φy.
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where

Φ̃ = [φr, φw, φy] . (54)

Second-order ET. When using second-order ET, the function h̃ (·) is given by

h̃ (r+1, w, y+1; Φ)

= (55)

φ0 + φr (r+1 (X)− r̃) + φw (w − w̃) + φy (y+1 (X)− ỹ)

+1
2φrr (r+1 (X)− r̃)2 + 1

2φww (w − w̃)2 + 1
2φyy (y+1 (X)− ỹ)2

+φrw (r+1 (X)− r̃) (w − w̃) + φry (r+1 (X)− r̃) (y+1 (X)− ỹ)

+φwy (w − w̃) (y+1 (X)− ỹ)

where

Φ = [φ0, φr, φw, φy, φrr, φww, φyy, φrw, φry, φwy, r̃, w̃, ỹ] . (56)

The additional six equations and associated error terms are given by

0 = Qij (w,w−1, r, y; Φ) i, j ∈ {r, w, y} (57)

Qrr (w,w−1, r, y; Φ) =
∂Q

∂w
φrr + 2

∂2Q

∂w∂r
φr +

∂2Q

∂w2
φ2
r +

∂2Q

∂r2
, (58)

Qww (w,w−1, r, y; Φ) =
∂Q

∂w
φww + 2

∂2Q

∂w∂w−1
φw +

∂2Q

∂w2
φ2
w +

∂2Q

∂w2
−1

, (59)

Qyy (w,w−1, r, y; Φ) =
∂Q

∂w
φyy + 2

∂2Q

∂w∂y
φy +

∂2Q

∂w2
φ2
y +

∂2Q

∂y2
, (60)

Qrw (w,w−1, r, y; Φ) =

 ∂Q
∂wφrw + ∂2Q

∂w∂w−1
φr + ∂2Q

∂w∂rφw

+∂2Q
∂w2φrφw + ∂2Q

∂r∂w−1

 , (61)

Qry (w,w−1, r, y; Φ) =

 ∂Q
∂wφry + ∂2Q

∂w∂yφr + ∂2Q
∂w∂rφy

+∂2Q
∂w2φrφy + ∂2Q

∂r∂y

 , (62)

Qwy (w,w−1, r, y; Φ) =

 ∂Q
∂wφwy + ∂2Q

∂w∂yφw + ∂2Q
∂w∂w−1

φy

+∂2Q
∂w2φwφy + ∂2Q

∂w−1∂y

 . (63)

These equations are obtained by differentiating equation (43) twice and imposing that

φrr =
∂2w

∂r2
, φww =

∂2w

∂w2
−1

, φyy =
∂2w

∂y2
,

φrw =
∂2w

∂r∂w−1
, φry =

∂2w

∂r∂y
, φwy =

∂2w

∂w−1∂y
. (64)
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E Results for other parameter values

The analysis in the main text is based on values for the standard deviations of the inno-

vations that are lower than the ones used in Coeurdacier, Rey, and Winant (2011). The

reason for our choice of parameter values is that the model generates very complex non-

linear ”escape” dynamics at the original CRW parameter values. More precisely, we find

that the solution for wealth generated by an accurate projections method hits the imposed

upper bound on wealth when the sample is long enough even when that upper bound is

extremely high.34 This is documented in figure 6, which plots parts of the projection and

CRW time paths at the original CRW parameter values. The figure has three panels,

each corresponding with a different upper bound on wealth imposed by the projection

algorithm. The three values considered are 35, 100, and 1000. The figure documents that

increasing the upper bound is not effective in making it not binding. In fact, if the upper

bound is increased from 100 to 1000 it actually becomes binding more often in this part

of the state space.

Escape dynamics occur at high values of the rate of return, but it is not due to a

few extreme values for the rate of return, since the same pattern of results is found when

the realizations of rt are constrained not to be further away from their mean than two

standard deviations. As documented in figure 6, the CRW solution does not capture these

escape dynamics. The ET algorithm also has difficulty obtaining solutions at many points

in the state space.

This type of behavior indicates that the model may not have a stationary solution at

those parameter values unless one does impose an upper bound.35 Projection methods

can incorporate such a bound, but this is not possible for CRW and ET. Therefore, we

prefer not to do a formal comparison of different solution methods at parameter values

34At higher values for σr and σy, it is important for the stability of the projection algorithm that an

upper bound is imposed.
35It is possible that there is a stationary solution despite the escape dynamics, but that the upper bounds

considered here are still not high enough. Imposing the upper bound flattens the policy function for wealth

at high interest rates even at values of wealth which are not that close to the upper bound, which makes

it even more surprising that the upper bound is reached during simulations.
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where we observe this type of escape dynamics.

F The neoclassical growth model

In this section, we make clear how easy it is to program the ET algorithm by provid-

ing the Matlab code that uses first-order ET to solve the neoclassical growth model, a

model that most readers will be familiar with. The program uses the Matlab symbolic

toolbox to calculate derivatives. The user also needs a subroutine to generate the Gauss-

Hermite quadrature nodes and weights. These are readily available and we provide one

at www.wouterdenhaan.com/software.htm. This website also contains the code displayed

here and the program to solve the same model with second-order ET.

clear;

% This program solves the stochastic Ramsey growth model using the

% ET-algorithm by Den Haan, Kobielarz, and Rendahl (2015).

% Declare parameters for the model

alpha = 1/3; % Capital share of income: 1/3.

beta = 1.04^(-1/4); % Discount factor: 4% annual interest rate.

delta = 0.025; % Depreciation rate.

gamma = 10; % Coefficient of relative risk aversion.

sigma = 0.03; % Standard deviation of productivity shock.

rho = 0.95; % Persistence of technology shock.

% Implied steady state

kss = ((1/beta+delta-1)/alpha)^(1/(alpha-1));

css = kss^(alpha)-delta*kss;

% Information regarding the shock

N quad = 5; % Number of nodes for the quadrature (5 goes a long way).

[Z W] = hernodes(N quad); % Generate nodes and weights.
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W = pi^(-1/2)*W; % Normalize weights.

Z = Z*sqrt(2)*sigma; % Normalize nodes.

% Declar symbolic variables

syms k c z phi k phi z kt ct zt

kp = exp(z)*k^(alpha)+(1-delta)*k-c;

zp = rho*z+Z;

% Define the Euler Equation

EE = c-(W’*( beta*(1+exp(zp)*alpha*kp^(alpha-1)-delta) ...

.*(ct+phi k*(kp-kt)+phi z*(zp-zt)).^(-gamma) ))^(-1/gamma);

% Take derivatives

dk = diff(EE,k);

dz = diff(EE,z);

dc = diff(EE,c);

% The implicit function theorem reveals that

% the following equations should hold:

Ek = phi k+dk./dc;

Ez = phi z+dz./dc;

% The collection of equations to be solved is therefore

E = [EE;Ek;Ez];

E = subs(E,[kt zt ct],[k z c]);

% Convert into a matlab function

E = matlabFunction(E,’vars’,{[c;phi k;phi z],k,z});
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% Solve the problem along a stochastic simulation.

T = 500;

k0 = zeros(1,T+1);

z0 = zeros(1,T+1);

k0(1) = kss;

z0(1) = 0;

% Initial guess

X = [css;0.9;0.9];

options = optimset(’Display’,’off’,’TolFun’,1e-14,’TolX’,1e-14);

rng(20150215,’twister’);

e = sigma*randn(T,1);

for t = 1:T

disp(t)

E1 = @(x) E(x,k0(t),z0(t));

X(:,t+1) = fsolve(E1,X(:,t),options);

k0(t+1) = exp(z0(t))*k0(t)^(alpha)+(1-delta)*k0(t)-X(1,t+1);

z0(t+1) = rho*z0(t)+e(t);

end

c0 = X(1,:);

% Done.
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Figure 1: Wealth Policy Function (low y value)
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B: CRW and accurate projection solution
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Notes: These graphs plots the values of the change in wealth, w−w−1, according to the indicated
algorithm as a function of beginning-of-period wealth, w−1, when income, y, is equal to 0.9082.
The three values of the realized gross rate of return, r, are equal to 1.0301, 10358, and 1.0415.



Figure 2: Consumption Policy Function (low y value)
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Notes: These graphs plots the values of consumption, c, according to the indicated algorithm as a
function of beginning-of-period wealth, w−1, when income, y, is equal to 0.9082. The three values
of the realized gross rate of return, r, are equal to 1.0301, 10358, and 1.0415.



Figure 3: Simulated Time Paths (whole sample)
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Notes: This graph plots simulated time series generated with the three algorithms using the exact
same initial conditions and same draws for the exogenous random variables. Whereas the projection
and the ET solution are difficult to distinguish, the CRW solution is clearly different.



Figure 4: Selected Short Samples: Wealth
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Notes: This graph plots parts of the simulated time series for wealth generated with the three
algorithms using the exact same initial conditions and same draws for the exogenous random
variables. Whereas the projection and the ET solution are difficult to distinguish, the CRW
solution is clearly different.
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Figure 5: Selected Short Samples: Consumption
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Notes: This graph plots parts of the simulated time series for consumption generated with the
three algorithms using the exact same initial conditions and same draws for the exogenous random
variables. Whereas the projection and the ET solution are difficult to distinguish, the CRW solution
is clearly different.

33



Figure 6: Simulated Wealth Time Series - Original CRW Parameter Values
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Notes: This graph plots simulated time series for wealth generated with the projection and the
CRW algorithm using the original CRW parameter values. The projection algorithm imposes the
indicated upper bound for wealth.
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Figure 7: Dynamic Euler-Equation Accuracy Test
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Notes: These graphs plot the actual time series for wealth and consumption and the time series
that are the explicit solutions to the first-order conditions using the approximation to calculate
next period’s choice for wealth. The fact that the two series are difficult to distinguish indicates
that the solution is accurate.
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Table 1: Parameter Values

σr 0.00125 ρr 0.9 r 1.04152878685 γ 4
σy 0.01 ρy 0.9 y 1
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Table 2: Distance of ET and CRW Outcomes Relative to Accurate Projection Solution

ET CRW

correlation of wt with projection solution 1.000 0.729
correlation of ∆wt with projection solution 1.000 0.798
correlation of HP-filtered wt with projection solution 1.000 0.790
mean abs. deviation of wt from projection as fraction of SD(wt) 0.83% 52.3%
max. abs. deviation of wt from projection as fraction of SD(wt) 3.62% 268.2%
correlation of ct with projection solution 1.000 0.730
correlation of ∆ct with projection solution 1.000 0.891
correlation of HP-filtered ct with projection solution 1.000 0.885
mean abs. deviation of ct from projection as fraction of y 0.21% 13.0%
max abs. deviation of ct from projection as fraction of y 0.92% 68.4%

Notes: This table reports different measures to indicate the similarity between data generated by the

CRW or the ET algorithm and data generated by an accurate projection algorithm. The statistics

are based on a simulation of 80,000 observations. SD(wt) stands for the standard deviation of

wealth.
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Table 3: Model Properties According to the Three Algorithms: Wealth

Projection ET CRW

mean of wt 0.934 0.983 0.198
standard deviation of wt 5.99 6.02 3.18
standard deviation of ∆wt 0.022 0.022 0.017
standard deviation of HP-filtered wt 0.041 0.041 0.031
correlation of wt and yt 0.033 0.032 0.076
correlation of wt and rt -0.004 -0.004 -0.004
correlation of wt and ct 0.999 0.999 0.998
correlation of ∆wt and ∆yt 0.168 0.168 0.216
correlation of ∆wt and ∆rt 0.068 0.069 0.060
correlation of ∆wt and ∆ct 0.375 0.376 0.327
correlation of HP-filtered wt and yt 0.118 0.117 0.144
correlation of HP-filtered wt and rt 0.048 0.049 0.045
correlation of HP-filtered wt and ct 0.432 0.433 0.370

Notes: This table reports model properties for data generated by the indicated

algorithm. The results are based on a simulation of 80,000 observations.
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Table 4: Model Properties According to the Three Algorithms: Consumption

Projection ET CRW

mean of ct 1.039 1.041 1.008
standard deviation of ct 0.250 0.251 0.134
standard deviation of ∆ct 0.0038 0.0038 0.0036
standard deviation of HP-filtered ct 0.0050 0.0050 0.0046
correlation of ct and yt 0.057 0.056 0.121
correlation of ct and rt -0.020 -0.020 -0.037
correlation of ∆ct and ∆yt 0.747 0.747 0.808
correlation of ∆ct and ∆rt -0.455 -0.452 -0.560
correlation of HP-filtered ct and yt 0.723 0.723 0.788
correlation of HP-filtered ct and rt -0.441 -0.439 -0.546

Notes: This table reports model properties for data generated by the indicated

algorithm. The results are based on a simulation of 80,000 observations.
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Table 5: Accuracy Test

mean
absolute error

maximum
absolute error

consumption
as fraction of y 9.2e− 5 4.0e− 4
as fraction of SD(wt) 1.5e− 5 6.7e− 5

wealth
as fraction of y 2.2e− 3 9.4e− 3
as fraction of SD(wt) 3.7e− 3 1.6e− 3

Notes: This table reports the errors of the dynamic Euler equation accuracy

test using a simulation of 80,000 observations.
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