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The Big Picture

Whether you like it or not you are a software engineer:
» Much wisdom we can learn from Silicon Valley
» Much technology we can exploit
» About increasing your productivity
» About reproducible results (scientific method, getting sued)

= much of the cost of software is maintenancel!



Good Code

Good code is:
» Easy to maintain
» Easy to extend
» Easy to understand ... even after a six month break!
» Straight-forward and direct ... no side-effects or surprises!

» Reads like English (or some other human language)



Some Questions

Before writing a line of code, ask yourself:
What will this code be used for?

» How often will it be used?

v

» How might it evolve? How can | isolate myself from possible
changes, such as using a different solver?

v

What part of this code is generic and what part
problem-specific?

What can | reuse?

v

What should be a reusable library or toolbox?

v
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Goals of Tactical Programming

Tactics are about structuring your code so that:
» Easier to read
» Easier to detect bugs
» Easier to understand
» Easier to extend

= increased productivity for free!!l



Use A Coding Convention

A good coding convention makes your code read like a good storey:

» Choose good names for functions and variables which clearly
convey their purpose

» Group logical blocks of code with space and comments
» Separate tokens with space
» Respect the local coding convention when working on code

Choose a convention and stick to it!



Structure Your Code

Group logical chunks of code together:

» Separate larger blocks with comments

» Create horizontal lines of '-", '=", etc. to indicate higher-level
groupings

» Just like books are organized into chapters, sections,
subsections, etc.

» Use vertical space (blank lines) to set off lower-level chunks of

code

» Use white space:

» Put space around operators =, +, -, *, / and inside of {},

O, and []

» Choose a sensible indentation scheme, such as two spaces
» Beware of tabs ...

» Put anything longer than 1-2 screenfuls of code in a separate
function



Choose Good Names

Choose names which describe the role of a function or variable:
» Separate multiple words with CamelCase or ¢_°
» Function names should start or end with a verb

» Encode type information into variable names: float, int,
matrix, vector, etc.

» One variable definition per line + a comment
» Start indexes with ix: ixStart, ixStop

» One ‘p’ for each level of pointer indirection

Bad Names: p, x, y, n, i, j, k, 1, jfuncl

Good Names: dwPriceFood, dwExcessDemand, dwIncome,
nGoods, vProb, IntegrateMarketShares(),
IsValid(), ix, jx, kx, pHHData



Braces

There are two main styles for braces:
1TBS/K+R/etc.

if ( IsBadState() ) {
fixProblem() ;
}

Allman/GNU /etc.

if ( IsBadState() )
{

fixProblem() ;
}



Write Comments

Comments are important:
» History of changes
» Why you did something, not what you did

» Explain anything tricky — you won't remember why you did
something next month...

» Use comments and white space to create convey logical
structure of code on small, medium, and large scales

» Start any file with a short one line comment explaining
purpose of module

» Document function interfaces and any quirks



One Place Only

Strive to minimize duplication:

» Are you writing code with cut and paste? = abstract it into a
function ...

» Use constants whenever possible:

» Define all numbers and constants in only one place

» Define indexes (with good names) for different columns or
rows in a matrix

» Make arguments const when only used for input

» No hard-coded numbers!!!

» Automate what you can:

> macros
> templates

» When you have to make changes, it is easier if you only have
to modify it in one place!



Order of Operations

Don't abuse order of operations:
» Only use order of operations for +, -, /, *
» For everything else, use parentheses!

» Avoid clever tricks and side-effects



MATLAB Tricks

Here are a couple tricks to improve your MATLAB code:
» Use cells by commenting the start of a section with %%:

» Group a logically-related block of code
> Rerun the cell with CTRL + RETURN

» Handle errors with keyboard

» Store column indexes in a structure: Index.Price,
Index.Income,

» Wrap related variables into a structure:

ChoiceData.X mCovariates ;
ChoiceData.Y vChoices ;
ChoiceData.nObs = length( vChoices ) ;



How to Design Software

Much of good software design is based on:

» Planning ahead for maintenance (one of the biggest costs of
most projects) and future extensions

» Writing testable code

» Choosing good abstractions
Questions to ponder:

» Where will my code run?

» What technologies does it depend on?

» How is likely to change?

» How will it be used?



Design Document

‘This code is too complicated to have a design document’ —
engineer at a major Internet portal

» You don't have time not to plan

» The more complicated your project, the more important it is
to get the design right

» Think about use cases:

» What are key parts of application?
» How do they interact?
» Draw a picture with Visio or Dia



Cultivate Good Habits

Practice OO Principles:
» Encapsulation
» Polymorphism
» Inheritance
» Interfaces: Open to extension, but closed to modification

Practice ‘genericity’, i.e., Templates
= OO0 forces you to follow good programming practices:
information hiding, loose coupling, and reuse



Interfaces

An interface is a contract:

v

Clear and easy to remember

v

Promotes loose coupling and reuse

v

Minimizes maintenance headaches by isolating implementation
from interface

Publish the interface in a header file:

v

» Separate from the implementation file
» Protect with include guards if using C preprocessor
» May need second header file for private information

v

Only a few arguments — put any more in a struct



Practice Information Hiding

Hiding information and implementation make your code more
robust:

» Put only the minimum amount of information in the public
name space

» Make everything else private or static
» Prevents unintentional access

» Now changing implementation details won't break other code



Reusable Code

Write reusable code:
» Collect general tools and components into a common library
» Reuse for faster development of other projects
» Decrease bugs through use of production code

Corollary: reuse (high quality) existing software libraries and
components — don't reinvent the wheel



Reentrancy

Good code is reentrant:

» Reentrant code = code which is thread-safe, i.e. it can be
executed by multiple threads at once with the same result:

» Race condition: when order of execution affects correctness
» Appears as an intermittent bug

» Uses local storage (arguments, stack variables) or pointer to a
control object (heap)

» Facilitates parallelization

» Avoids race conditions

» Global variables are evil evil evil.



State Information

Some times you must pass around state information:
» Encapsulate it in an object
» Pass around a pointer to that object
» Do not use global variables:

» Error prone

» Hard to debug

» Can lead to race conditions when modified inconsistently in
multiple locations



Defensive Programming |

Write code to facilitate debugging:
» Modularize functionality

» E.g., access shared resources or special facilities only through
one library: splinelib, splineCreate, splineEval,
splineDelete,

» If a bug occurs then it is:

1. In the library
2. Use of the library



Defensive Programming |l

Isolate your code from things which might change:
» Third party software: MPI, solvers, libraries
» Platform-specific technologies: OS-specific APls
» Buggy code by co-workers (‘software condom’)

l.e., write a thin layer between your code and volatile resources



Defensive Programming Il

Make the compiler work for you:

>

>

The sooner you catch an error, the cheaper it is to fix

Enable strictest compiler warnings (e.g., % gcc -Wall
-pedantic ...)

Try to eliminate all compiler warnings from your code!
Program so compiler catches errors, e.g.:

if( 0 == nRead )
handleError() ;

» Use const

» Compile on multiple compilers

» Compile C with a C++ compiler



Trade-offs

You need to evaluate many trade-offs:
> Speed vs. robustness
» Speed vs. memory usage

» Speed vs. maintainability (e.g. fast code may require
unreadable optimizations)

» Development time vs. code quality (performance,
maintainability, reusability)

v

Quality vs. frequency of use



Debugging

Unfortunately, you will make mistakes:
» Learn to use the debugger
» Don't sprinkle your code with printf, WRITE, etc.:

» Obscures code readability
» 1/0 slows code considerably

» Add diagnostic logging to large applications

» Message logging to files
» Print messages to screen in debug version only



Debugging

Use the C preprocessor to facilitate debugging (even in FORTRAN):

#ifdef USE_DIAG

#define DIAG_PRINT PRINT *,
#else

#define DIAG_PRINT !

#endif

Must use correct compiler flags: -fpp -allow no_fppcomments



Optimization

Your intuition about what needs optimization is often wrong:
» First, get your code to work correctly
» Then optimize:

» Measure code with a profiler
» Optimize what needs optimizing

» MATLAB has a built-in optimizer

» For gcc, use gperf



Vectorization

Write loops which support vectorization (unrolling):
> Use:

Straight-line code

Vector (array) data only

Local variables

Assignment statements only
Pre-defined (constant) exit condition

» Avoid:

Function calls

Non-mathematical operations (which are difficult to vectorize)
Mixing vectorizable types

Memory access patterns which prevent vectorization — i.e.
where one statement access future and/or previous array
elements

vV vy VY VvYy

vV vy vYyy



Version Control

Version Control is a safety net for programmers:

v

Manages every version of your code
Supports distributed software development

Supports multiple developers

>
>

» Keeps everything synchronized

» Automatically merges different changes to the same code
>

Common examples: SVN, CVS, hg, ClearCase, Perforce, ...



Make

Make manages building software:
» Checks dependencies
» Builds only what is necessary
» Allows abstraction of build process:

» Tools
» Options
» Platform specific details

» Promotes portability



Editor and OS

Invest in your tools:

» Learn to use a good programming editor: Vi, Emacs, jEdit,
Notepad++, Eclipse, etc.

» Will increase your productivity
» Same applies to your OS — get some Unix in your life!
> etags, cscope, ctree, etc. make it easy to explore code

» Eclipse, MS Visual Studio have powerful tools as well
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