Value Function Iteration
versus
Euler equation methods

Wouter J. Den Haan
London School of Economics

© by Wouter J. Den Haan
Overview

1. How to do value function iteration (VFI)
2. VFI versus Euler equation methods
 1. convergence
 2. speed
 3. complex problems
Bellman equation

\[V(x) = \max_{x_{+1} \in \Gamma(x)} U(x, x_{+1}) + E_t [\beta V(x_{+1})] \]
Essence of VFI

- $V^i(x)$: flexible functional form
 - piecewise linear (or higher-order spline)
 - discrete valued function (if $\Gamma(x)$ has $\chi < \infty$ elements)
 - quadratic (or higher-order polynomial)

- $V^{i+1}(x)$ is obtained from

$$V^{i+1}(x) = \max_{x+1 \in \Gamma(x)} U(x, x+1) + E_t \left[\beta V^i(x+1) \right]$$
Essence of VFI

- This works in general

- However, on a computer the functional form of $V^i(x)$ must stay the same
 (so computer can store coefficients characterizing function)
Possible ways to implement VFI

1. Linear-Quadratic
 - $U(\cdot)$ is quadratic and constraints are linear
 $\implies V^i(\cdot)$ would remain quadratic
 - !!! To get a true first-order approximation to policy function
 you cannot take linear approximation of constraints
 \implies either get rid of constraint by substitution or use the
 "correct" LQ approximation (see perturbation slides)

2. Discrete grid $\implies \Gamma(x)$ and $V(x)$ have finite # of elements
Possible ways to implement VFI

3. Piecewise linear
 - *choices* are no longer constrained to be on grid
 - \(V^i(\cdot) \) is characterized by function values on grid
 - Simply do maximization on grid

4. Regular polynomial
 - *choices* are no longer constrained to be on grid
 - calculate values \(V \) on grid
 - obtain \(V^{i+1} \) by fitting polynomial through calculated point
Convergence

- There are several convergence results for VFI
- Some such results for Euler equation methods
 - but you have to do it right (e.g. use time & not fixed-point iteration)
- But especially for more complex problems, VFI is more likely to converge
Speed; algorithm choice

- VFI: because of the max operator you typically can only iterate
 - slow if discount factor is close to 1

- Euler equation method have more options
 - calculating fixed point directly with equation solver typically faster
Speed; impact choices on V & Euler

VFI tends to be slow in many typical economic applications

- Reason: value function is flat \(\Rightarrow \) hard to find max
 - important to be aware of this
 - Krusell and Smith (1996) show that utility loss of keeping capital stock constant is minor in neoclassical growth model
- But shouldn’t a flat utility function be problematic for Euler eq. methods as well?
Speed; impact choices on V & Euler

Example to show Euler eq. methods less affected by flatness

\[
\max_{x_1, x_2} x_1^{1-\nu} + x_2^{1-\nu}
\]
\[
s.t. \quad x_1 + x_2 \leq 2
\]
\[
\quad x_1, x_2 \geq 0
\]
Consider a *huge* move away from optimum

<table>
<thead>
<tr>
<th>ν</th>
<th>$u(1, 1)$</th>
<th>$u(2, 0)$</th>
<th>consumption equivalent loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>2</td>
<td>1.9862</td>
<td>0.7%</td>
</tr>
<tr>
<td>0.001</td>
<td>2</td>
<td>1.9986</td>
<td>0.07%</td>
</tr>
</tbody>
</table>
Speed; impact choices on V & Euler

First-order condition:

\[
\left(\frac{x_1}{x_2} \right)^{-\nu} = 1 \text{ or } x_1 = 1^{-1/\nu} \times x_2
\]

Marginal rates of substitution:

<table>
<thead>
<tr>
<th>ν</th>
<th>$x_1 = x_2 = 1$</th>
<th>$x_1 = 2, x_2 = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>0.001</td>
<td>1</td>
<td>∞</td>
</tr>
</tbody>
</table>
Dealing with complex problems

- Both VFI and Euler-equation methods can deal with inequality constraints

- Euler equations require first-order conditions to be sufficient
 - this requires concavity (utility function) and convex opportunity set
 - this is not always satisfied
Non-convex problem - example

Environment:

- Two technologies:
 - $y_t = k_t^\alpha$
 - $y_t = Ak_t^\alpha$ with $A > 1$

- Higher-productivity technology can be used after paying a one-time cost ψ
Non-convex problem - example

\[W(k) = \max \left\{ \max_{k+1} k^\alpha - k + 1 + \beta W(k+1), \quad \max_{k+1} k^\alpha - k + 1 - \psi + \beta V(k+1) \right\} \]

\[V(k) = \max_{k+1} A k^\alpha - k + 1 + \beta V(k+1) \]
RHS Bellman equation for low capital stock (k=0.1)
Ultimate value function

\[V(K) \]

\[W(K) \text{ without upgrade} \]

\[W(K) \text{ with upgrade} \]
References

- Slides on perturbation; available online.
- Slides on projection methods; available online.
 - shows that time-iteration converges even in the presence of inequality constraints